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Chapter 1

Introduction

In this report, we address the general problem of designing controllers that minimize the
maximum peak-to-peak gain, otherwise known as the £; optimal control problem, in the

presence of structured uncertainty. Four different problems are discussed:

1. Controller design in the presence of structured uncertainty with a general discussion

on the synthesis of {; optimal controllers.
2. The ¢, State-feedback problem.
3. The advantages of nonlinear controllers in minimizing the ¢, induced norm.
4. Peak-to-Peak performance for slowly varying systems.

These problems are addressed in the following four chapters. Chapter 1 is taken
from the paper written by Dahleh and Khammsh (8], Chapter 2 is taken from the paper '
written by Diaz-Bobillo and Dahleh [23], Chapter 3 is taken from the paper written
by Dahleh and Shamma [14] and finally Chapter 4 is taken from the paper written by
Voulgaris, Dahleh and Valavani [59].






Chapter 2

Robust Controller Design in the
presence of Structured
Uncertainty

This chapter addresses the problem of designing feedback controllers to achieve good
performance in the presence of structured plant uncertainty and bounded but unknown
disturbances. A general formulation for the performance robustness problem is presented
and exact computable conditions are furnished. These conditions are then utilized for
synthesizing robust controllers which involves solving {; optimization problems. These
solutions are computed using the duality theory of Lagrange multipliers. Approximations

and computational issues are discussed.

2.1 Introduction

The objective of Robust Control is to provide in a quantitative way the fundamental
limitations and capabilities of controller design in order to achieve good performance
requirements in the presence of uncertainty. Even though a real system is not uncertain,
it is desirable to think of it as such to reflect our imprecise or partial knowledge of its
dynamics. On the other hand, uncertainty in the noise and disturbances can be cast
under “real uncertainties,” as it is practically impossible to provide exact models for
such inputs.

Many of the design specifications tend to be concerned with amplitudes of signals. For
instance, tracking, disturbance rejection, actuator authority, all result in specifications

concerning the maximum amplitudes of signals. On the other hand, disturbances and



noise are usually persistent; bounded; otherwise unknown: This environment motivates
a Peak-to-Peak kind of specifications; which is the theme of the £; theory:

In this chapter, a general framework for designing controllers that achieve robust
Peak-to-Peak;)erformance in the presence of plant perturbations is presented. First,
computable necessary and sufficient conditions for performance robustness are presented:
The connections between these conditions and spectral properties of positive matrices
are highlighted and utilized to simplify the computations. These conditions are in turn
used for the synthesis problem which will involve iterative solutions of £; minimization
problems, the solution of which is obtained by using the duality theory of Lagrange
multipliers.

The {; problem, formulated in [58], was solved in [10, 11]. The theory was further
developed in [17, 23, 24, 45, 54, 55]. The robust stabilization problem in the presence
of {.-stable perturbations was first analyzed in (9] in the case of unstructured pertur-
bations. In [32], a performance objective was added to the robust stability requirement
in the unstructured perturbations case and conditions were provided for robust per-
formance and stability. This led the way to the development of exact necessary and
sufficient conditions for robust performance in the presence of structured perturbations
(33, 34, 35]. Most of the above results have continuous-time analogs.

There are a number of contributions in this chapter. On one hand, it presents a uni-
fied framework for designing robust controllers in the presence of structured uncertainty.
Non-conservative conditions to guarantee robust performance are developed directly in
terms of the spectral radius of certain matrices capturing the structure of the perturba-
tions. Exact relations between these conditions and linear matrix inequality conditions
are then established. On the other hand, the use of linear programming in synthesiz-
ing robust controllers is highlighted through the application of the theory of Lagrange
multipliers. Through this simple formulation, problems that admit a finite-dimensional
equivalence become quite transparent. For the rest of the problems, the theory proves to
be quite instrumental in providing upper and lower approximations of the exact problem.

This chapter puts together all of the above development in a way that makes the
theory readily usable for design. In general, details that appeared elsewhere will not be
presented, however, simple and intuitive proofs of the main ideas will be. Similarities

and contrasts between this theory and the u formalism will also be highlighted.



2.2 Preliminaries

First, some notation regarding standard concepts for input/output systems. For more

details, consult [18, 60] and references therein.
o [, denotes the set of all sequences f = {fo, f1, f2,---}, fr € RY, so that

”f“lw = s‘ip [ f(k)oo < o0,

where | f(k)|co is the standard £, norm on vectors. Also, £, . denotes the extended

space of all sequences in RY and £x,e\{x denotes the set difference.

£y, p € [1,00), denotes the set of all sequences so that

1/p
1£1le, = (z lf(k)lg) < oo,
k

¢o denotes the subspace of £, of sequences converging to zero.

S denotes the backward shift operator (unit time delay).

P, denotes the kth-truncation operator on Lo ot

Pe: {fo, f1y fas- o} — {fose oo fr 0,0}
* A nonlinear operator H : { , — {x . is causal if
P.H = P.HP,, Yk=0,1,2,...,

strictly causal if
P.H=FPHP,_,, YE=0,1,2,...,

time-invariant if it commutes with the shift operator (HS = SH), and £, stable if

| P H fl|¢

Hl|| = sup sup —————L

] pfung | Pe flle,
Py 1+#0

The quantity ||H|| is called the induced operator norm over £,.



" s Lrv denotes the set of all linear causal {,-stable operators. This space is charac- -

terized by infinite block lower triangular matrices of the form
- Hoo 0

Hyo Hy

where H;; is a p X ¢ matrix. This infinite matrix representation of H acts on

elements of {2, by multiplication, i.e., if u € £, then y := Hu € {8, where

y(k) = Y %o Heju(j) € RP. The induced norm of such an operator is given by:
WHllcpy = sup |(Hir...Hii)h
where |A|; = max; 3 ; |a;;l.

o Lrr denotes the set of all H € Lry which are time-invariant. It is well known
that Lrs is isomorphic to £; and the matrix representation of the operator has a
Toeplitz structure. Every element in L7y is associated with a A-transform defined

as

x
H(X) = H(k)Ak
k=0
The collection of all such transforms is usually denoted by A, which will be

equipped with the same norm as the ¢; norm.

Throughout this chapter, systems are thought of as operators. So the composition
of two operators G, H is denoted as GH. If both are time-invariant then GH € {; (or
Lrr), and the induced norm is denoted by ||GH||;. When the A-transform is referred
to specifically, we use the notation H for the transform of H. Also, all operator spaces
are matrix-valued functions whose dimensions will be suppressed in general whenever
understood from the context.

Let X be a normed linear space. The space of all bounded linear functionals on
X is denoted X*, equipped with the natural induced norm; X* is always complete.
It is convenient to put on X* a weaker topology which makes X** = X. This is the
weak*-topology.

Dual of £,,1 < p < co: The dual of £, is £y, where > + 1 =1. The characterization is

given by the following theorem.



Theorem 2.2.1 Every bounded linear functional f on {,,1 < p < o, is representable
uniquely in the form
o
- fle) = =iy
1=0
where y = (y:) is an element in {,. Furthermore, every element of {; defines a member

of £; in this way and

A1l = Tyllq

The above definitions are extended for vector-valued sequences and matrix-valued se-
quences in the obvious way.

In this chapter, we will give a solution to the ¢; synthesis problem by using the
theory of Lagrange multipliers. Many people are quite familiar with this theory for
finite-dimensional optimization problems, and in the sequel, we will review the basic
duality theorem for infinite-dimensional problems. For a more thorough treatment, see
(43].

Let X be a vector space. A convex cone P is a convex set such that if z € P then
az € P for all real a > 0. Given such P, it is possible to define an ordering relation on
X as follows: ¢ > y if and only if z — y € P. Then it is natural to define a dual cone P*

(with an abuse of notation) inside X* in the following way:
P*={z*e X*|<z,z*>>0Vz € P}.

This in turn defines an ordering relation on X*.

Let f be a convex function from X to R and G a convex map from X to another
normed space Z. Also, let 2 be a convex subset of X. Assume that there exists z; € X
such that G(z1) < 0 (the inequality with respect to some cone in Z). This is generally

known as the regularity assumption. Define the minimization problem:
Ho = inf f(z) subjectto z €, G(z)<0.

The Lagrange multiplier theory basically says that this constraint optimization problem
can be transformed to an unconstrained problem over z € 2. Precisely, there exists an

element z§ > 0 in Z* (with respect to the dual cone), so that

po = if {f(z)+ < G(2), 2 >}



The element 23 isrprecmely the Lagra.nge multxpher Eqmvalently,

po = sup inf {f(2)+ < G(z), =" >}.
z+2>02€N

In the case where the infimization problem contains equahty constramts, we w1].l replace

them by two inequality constraints. Care should be taken in thxs case since the : assump- o

tion that the constraint set has an interior pomt will be v:ola.ted however under mild
assumptions, if the equality constraints are given in terms of linear operators, the result

will still hold without the regularity conditions.

2.3 Why the £, signal norm?

In many real-world applications, output disturbance and/or noise is persistent, i.e., con-
tinues acting on the system as long as the system is in operation. This implies that
such inputs have infinite energy, and thus one cannot model them as “bounded-energy
signals.” Nevertheless, one can get a good estimate on the maximum amplitude of such
inputs. Examples where bounded disturbances arise in practical situations are abun-
-dant. Wind gusts facing an aircraft in flight can be viewed as bounded disturbances.
Without a correcting control action, such disturbances will cause the aircraft to deviate
from its set path. An automobile driven over an unpaved road experiences disturbances
due to the irregularity of the course. Such disturbances, although persistent, are clearly
bounded in magnitude. In process control, level measurements of a boiling liquid are
corrupted by bounded disturbances due to the constant level fluctuations of the liquid.
Because such disturbances are so frequent, a mathematical model describing them is
essential. The {,, norm is clearly the most natural choice for measuring the size of such
disturbances. In general, we will assume that the disturbance is the output of a linear
time-invariant (LTI) filter subjected to signals of magnitude less than or equal to one,
i.e.,

Not only is the {,, norm useful for measuring input signal size, but it can also be very
useful as a measure for the size of output signals. For example, in many applications it
is crucial that the tracking error never exceeds a certain level at any time. While this
requirement cannot be captured by using the {; norm, it can be stated explicitly as a

condition on the ¢, norm of the error signal. Another situation when the {,, norm is



useful is when the plant, or any other device in the control loop, has a maximum input

rating which should not be exceeded. This translates directly to a requirement on the

{s norm of that input: An example of such a requirement appears in the next section:
In addition; the {,, norm plays an important role in designing controllers for nonlinear
systems. Since most of the nonlinear controller designs are based on Hnearizatic;n; the
linear model gives a faithful representation of the system only if rthe states remain close

to the equilibrium point, a requirement captured directly in terms of the {, norm.

2.4 The ¢/, Norm

While the {,, norm is used as a measure of signal size, the £; norm is used to measure

a system’s amplification of £, input signals. Let T be an LTI system given by

2(t) = (Tw)(t) = 3 T(k)w(t - k).

k=0
The inputs and outputs of the system are measured by their maximum amplitude over

all time, otherwise known as the {,, norm, i.e.,
lwllee = maxsup |uw;(k)].

The ¢; norm of the system T is precisely equal to the maximum amplification the system
exerts on bounded inputs. This measure defined on the system T is known as the induced
operator norm and is mathematically defined as
ITI= sup |ITwllw = ||T]},
w|eo <1

where ||T'||; is the {;-norm of the pulse response and is given by
1Tl = max 3 3 5 (R).
i k

A system is said to be {,- stable if it has a bounded ¢; norm, and the space of all
such systems will be denoted by ¢;. From this definition, it is clear that the system
attenuates inputs if its /; norm is strictly less than unity.

In the case where the inputs and outputs of the linear system are measured by the £,

norm, then the gain of the system is given by the H., norm and is given by [20, 28, 57, 62]

“T“ccz sup Umac(T(ew))'
0<8<2n

8




The two induced norms are related by [4]

I1Tlles < C1lIT Iz < Co(N))|Tlco

where C; is a constant depending only on the dimension of the matrix T, and C, is a
linear function of the McMillan degree N of T'. In other words, every system inside ¢; is
also inside H,, but the converse is not true. This means that there exist {5 stable LTI
systems that are not {,, stable; an example is the function with the A-transform given
by [4];

A 1

T(A) = eT=%,

Thus, for LTI systems, minimizing the {; norm guarantees that the H., norm is bounded.
This means that this system will have good £;-disturbance rejection properties as well as
£ -disturbance rejection properties. Also, the {; norm is more closely allied with BIBO
stability notions and hence quite desirable to work with. The disadvantage in working
with the £; norm is the fact that it is a Banach space of operators operating on a Banach
space, not a Hilbert space itself. Many of the standard tools are not usable; however,

this chapter will present new techniques for handling problems of this kind.

2.5 Prototype Problems

In this section we demonstrate the advantages of using the £, signal norm by presenting
a few prototype problems. For each problem, certain control objectives related to the £,
norm are to be met. These problems demonstrate the advantages of using the ¢, signal
norm as a means of capturing time-domain specifications in an uncertain environment.
Later on, it will be shown how all such problems can be treated in a unified manner
under a single framework. We shall then develop mathematical techniques for obtaining

solutions for all problems which fit within that framework.

2.5.1 Disturbance Rejection Problem

Consider the system in Fig. 2.1. Here P, is a plant and K a controller, both LTI.

The system is subjected to bounded disturbances which are reflected at the plant
output. As mentioned earlier, these disturbances are assumed to be the output of a
time-invariant filter W, reflecting the frequency content of such disturbances. The control

objective in this case will be to find a controller K which satisfies the following:




Figure 2.1: Disturbance Rejection Problem

1. K internally stabilizes the feedback system.

2. The effect of the disturbances at the plant output is minimized, i.e., K minimizes

sup || z|leo-
Jlwlleo L1

2.5.2 Command Following in the Presence of Input Saturation

The command following problem is equivalent to the disturbance rejection problem.

Consider the system in Fig. 2.2. The plant, P, suffers from saturation nonlinearities at its

Figure 2.2: Command Following with Input Saturation

10



input: Therefore; it can be viewed as having two components: -a saturation component;- -

Sat(:), and an LTI component, P,. The saturation component is defined as follows:

- _Ju |u] < Unax
Sai(v) = {Uw [u] > Ve

As a result the plant is described as P = P, Sat(-). Because of the presence of the
saturation, the plant input, u, must not be allowed to exceed U,,,.. This requirement
can be captured in a natural way using the {,, norm of u. In other words, u must satisfy
lulloo < Umaa-

The command, r, is to be followed at the plant output. It is not fixed but rather can

be any command in the set
{r=Ww : |lu||le <1},

where W reflects the frequency content of the desired commands and is typically a low

pass filter.

The control objectives can now be stated more precisely. It is desired to find a

controller K so that:
1. K internally stabilizes the system.
2. ||u)leo < Umnaz-

3. y follows r uniformly in time to within a maximum error level of v > 0, i.e.,

”y - r”oo § v
2.5.3 Robust Disturbance Rejection

In the previous two problems, the plant was assumed to be known exactly. This is rarely
the case due to unmodelled dynamics, parameter variations, etc. When the controller
designed for a nominal plant model is implemented on the real system, there are no
guarantees on the resulting performance of the system. Even requirements as basic as
stability may not be met., The deviation from the expected behavior of the system
clearly depends on the accuracy of the model. Since modelling uncertainty is inevitable,
it is imperative to include stability and performance robustness to model uncertainty

as a design objective. We now take a second look at the disturbance rejection problem

11



B W, Ws W,
- N
a ° -/ /
K

Figure 2.3: Robust Disturbance Rejection Problem

discussed earlier. Instead of considering a single nominal time-invariant plant, P,, we
shall instead consider a collection of plants. The class of plants considered is taken to be
II:= {P = P, + W3AW, : A is causal and ||A|| := l—‘f;’ﬁ'—‘—'ﬁ < 1} ,
o
where W, and W, are time-invariant weighting functions. In this definition, the plant
perturbation, A, may be time-varying and/or nonlinear. Any plant belonging to this
plant class is said to be admissible. Note that when A = 0, we recover the nominal LTI
plant. Consequently, the collection of admissible plants, II, may be viewed as a ball of
plants centered around the nominal time-invariant plant model. If a system property,
-such as stability, holds for all admissible plants it is said to be robust. We now add to
our original disturbance rejection problem a new objective: robustness. In other words,

the controller K is now required to perform the following tasks:
1. K internally stabilizes all admissible plants, i.e., all plants in the class II.

2. K minimizes the effect of the disturbance w on the magnitude of the output for

the worst possible admissible plant, i.e., K minimizes sup sup ||¥||co.
Pell |jwi|eo <1

2.5.4 Robustness in the Presence of Coprime Factor Perturbations

Another approach to the representation of plant uncertainty is through coprime factor

perturbations [5, 26]. Let P, = NM~! be a coprime factorization of the nominal plant.

12



-K

Figure 2.4: Coprime Factor Perturbations

The graph of the plant P, over the space £, is define as the image of the space £, under
the map Gp, where

Gp, i loo — Lo X Lo

Mul
Gp,u= [Nu} .

The class of admissible plants can be defined as those plants whose graph is perturbed

in following way:

M+ A
m={p:cr= N1 2] I <1000 1}
This plant class can be viewed as that obtained by perturbing the plant numerator and
the plant denominator independently as shown in Fig. 2.4. The main objective in this
case is to find a controller K which stabilizes all plants in the class II.

2.5.5 A Multiobjective Control Problem

In almost all practical control problems, more than one objective must be met simulta-
neously. Perhaps one of the most attractive features of the present approach is its ability
to handle multiple objectives in a natural way. As an example of a multiple objective
problem consider the system in Fig. 2.5. In the figure the plant is subjected to multi-

plicative output perturbations. In addition it has a saturation nonlinearity at its input of

13
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Figure 2.5: Multiobjective Problem

the type discussed earlier. A command input, r, is applied while a bounded disturbance,
d, is acting at the plant output. The objectives in this problem are a combination of
those objectives in the first three problems discussed earlier. Aside from stabilizing all
admissible plants, the controller must also ensure that the plant input, u, never exceeds
its maximum, U4z, despite the presence of the output disturbance, the command input,
and the plant uncertainty. Furthermore, the tracking error in this unfriendly environ-
ment must be maintained at a minimum level for all time. These requirements on the

controller are summarized as follows:
1. K stabilizes all plants in II.

2. K is chosen so that sup sup ||u|le < Umaz-
Jlwillo <1 PEN

3. K is chosen so that sup sup ||e||e is minimized.
llwillo <1 PEI

Comment: It is possible in this formulation to include time-varying weights with which
one can emphasize certain periods of the time response. The general framework and
solutions presented in the sequel generalize in the presence of such weights; however, we

will restrict our discussion to the time-invariant case.

14



Figure 2.6: The Robust Performance Problem

2.6 A General Formulation: The Robust Performance
Problem

In the previous section, we have formulated sample control problems which reflect var-
ious practical control requirements. Two assumptions were embedded in the problem
statement. The first of these is that the command signals and the disturbance signals
do not necessarily decay in time but can instead persist over all time so long as they
are bounded. This is a fairly realistic assumption and leads to the adoption of the £
norm to measure the signal size. The second consists of requiring the regulated signals
of interest to have small mazimum amplitudes. Thus, once more, the {,, signal norm is
used as a measure for signal size, but this time it is the regulated output signals which
are being measured. When considering that quite often the output of interest is a track-
ing error, plant input and/or plant output, it becomes clear that limiting the maximum
value these signals can achieve is desirable if not necessary. As a means for obtaining
a unifying framework for formulating and solving a wide variety of problems with £
signal norms and {, induced-norm bounded perturbations, we set up the Robust Perfor-
mance Problem. All the prototype problems discussed in the previous section are special
cases of this general problem. So consider the system in Fig. 2.6: A models the system
uncertainty, K is the controller, and G, contains the remaining part of the system. It is

assumed that A belongs to the following class:

D(n) := {A = diag(Ay,...,An) ¢ A;is causal and ||A;]| < 1}.

15



Here ”A,l [Wi; ‘the induced- é;'-norﬁl;'i:e:;" 1A :*sup;aw%:ln the--sequel-;;he'ﬁ;’s‘—

are assumed to be SISO for simplicity. There is no time-invariance restriction on the
perturbations, and hence time-varying and/or nonlinear perturbations are allowed. The
diagonal structure of the perturbations is essential for incorporating information about
the location of the system uncertainty. For example actuator unmodelled dynamics are
not related to sensor unmodelled dynamics or to the plant’s unmodelled high-frequency
dynamics, and should not be modeled by the same perturbation block: By isolating the
independent sources of uncertainty, a more realistic and less conservative system model
is obtained. This is the main reason for considering structured perturbations. While
A models the uncertain part of the system, G, is the known part of the system with
the exception of the controller, and it is a 3 X 3 block matrix. The actual system is
" an element in the upper linear fractional connection of G, and the admissible A’s. So
included in G, is the nominal plant/plants, any input and output weighting functions,
and any weighting functions on the perturbations. We shall restrict the weights and the
nominal plant to be LTIL. As a result, G, is LTI. The signal w denotes all exogenous
inputs, including the command inputs and the disturbance inputs which are assumed to
be in £, while z denotes the regulated outputs. Both w and z are allowed to be vector
signals. From now on, we shall refer to the map taking w to z as 7,,. The induced {,
norm of T,,, is defined as follows:

up = sup

e o 1 Twlleo _  lzlleo
ITeoll = 22 ol = 2R Tl

Finally, the controller K is assumed to be LTI. We are now ready to state the Robust

Performance Problem.

Robust Performance Problem: Find a controller K so that

1. The system achieves robust stability, i.e., K internally stabilizes the system for all

admissible perturbations, i.e., for all A in D(n).
2. The system achieves robust performance, i.e., K is chosen so that

sup || Tzl < 1.
A€D(n)

As mentioned earlier, the prototype problems discussed can all fit in this framework.

As an example, for the Disturbance Rejection Problem since the number of perturbation
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blocks, n, is zero, G, has only two inputs w and u, and two outputs z and y. As a result

G, has the form:
W, -P,

- Go = (WI _ Po )
This is referred to as the nominal performance problem.

On the other hand, for the robust disturbance rejection problem n will be 1. Thus,
G, has an additional input fed from the perturbation output, and an additional output
feeding the perturbation input. It follows that G, has the following structure:
0 0 -W,P,
Go = W3 W1 -— Po .
W3 Wl -Po

And so on.

2.7 Robustness Conditions

Having stated the Robust Performance Problem, we can now focus our attention on its
solution. In particular, we shall develop necessary and sufficient conditions for achieving
both performance robustness and stability robustness. These conditions will be used for
the robustness analysis of the system at hand. In this case, the controller is assumed
given and fixed and its effect on the robustness of the system is investigated. The
same conditions developed for robustness analysis are used to develop techniques for the
synthesis of robust controllers.

We begin by discussing the robustness analysis issue. Suppose we are given a nom-
inal system G,, a perturbation class D(n), and a controller K connected as shown in
Fig. 2.6. We can incorporate G, and K together and view them as one system, M, as
shown in Fig. 2.7. Thus M will have two inputs and two outputs. We will assume that
the controller K stabilizes the nominal system G,; otherwise robust stability and hence
performance clearly will not be achieved. Consequently, M will be LTI and stable. We
will say the system in Fig. 2.7 achieves robust stability if it is stable for all admissible
perturbations. We will say that it achieves robust performance if, in addition, ||7,,]| < 1
for all admissible perturbations. We can now state the following problem whose solution

is provided in the next two sections:

Robustness Analysis Problem = Under what conditions on M will the system in

Fig. 7 achieve robust performance?
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Figure 2.7: Robust Performance Problem in M-A form

2.7.1 Stability Robustness vs. Performance Robustness

It is an interesting fact that a robust performance problem can be transformed to a robust
stability problem. This has been shown in [22, 21, 47] when the perturbations are LTI
with an L, induced-norm. This remains true in our case as well, although the method
of proof is quite different. To elaborate further on this relationship between stability
robustness and performance robustness consider the two systems shown in Fig. 2.8.

System I corresponds to a performance robustness problem, while System II is formed

A
A
M
w M z
Ap
System I System II

Figure 2.8: Stability Robustness vs. Performance Robustness
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from System I by feeding z back to w through a fictitious perturbation, Ap, satisfying ~—__

[lAp|l £ 1. As a result, System II has D(n + 1) as its perturbation class. We can now
ask the following question: How does the performance robustness of System I relate to.
the stability robustness of System II ? One aspect of the relationship between the two
notions of stability is fairly obvious: performance robustness of System I implies stability
robustness of System II. This is quite easy to see. Since robust performance is equivalent
to the norm of the map between w and 2 being less than one, the Small Gain Theorem
can be used to establish the stability of System II for all ||Ap|| < 1, or equivalently
to establish the robust stability of System II. Equally important, the relation between
stability robustness and performance robustness holds the other way as well. In other
words, stability robustness of System II implies performance robustness of System I.
This direction is not as obvious as the first one. The proof follows from certain results

on the robustness of time-varying systems.

2.7.2 Stability Robustness Conditions

Because performance robustness is equivalent to stability robustness in the sense dis-
cussed earlier, we need only discuss stability robustness. Specifically, we can consider
the interconnection of a stable LTI system, M, with a structured perturbation A € D(n)
in Fig. 2.9, and seek necessary and sufficient conditions for the stability robustness of the

system. Since M and A are both stable, the internal stability of the system is equivalent

Figure 2.9: Stability robustness problem

to the map I — M A having a stable inverse, one which maps /., to itself with a finite
gain. When the signal norm is the {; norm and the perturbations are time-invariant,

the conditions are provided by the Structured Singular Value, the function p [22]. In
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particular, robustness is achieved iff sup w(M(e’®)) < 1. In our formulation, it turns
: 0<6<L2r

out that the conditions are much simpler and easier to compute than y. Before we can

present these_conditions we need to define a certain nonnegative matrix, M, which de-

pends solely on M. Recalling M has n inputs and n outputs, it can be partitioned as

follows:
My, ... Ml,,
My ... M,

Each M;; is LTI and stable, and thus M;; € ¢;. Clearly ||M;;||; can be computed with
arbitrary accuracy by considering finite truncations of M;; as approximations. We can

now define M as follows:

—

(Ml -.. [|Minll
M=| :
IMarlly -oo || Manll

One of the most interesting aspects of the robustness problem formulated here is the
role which M plays in the system robustness. This is presented in the next theorem due

to Khammash and Pearson (33, 34, 35].

Theorem 2.7.1 The system in Fig. 2.9 possesses robust stability iff any one of the
following holds:

1. p(M) < 1, where p(.) denotes the spectral radius.

2. 2 < Mz and ¢ > 0 imply that ¢ = 0, where the vector inequalities are to be

. interpreted componentwise.
3. l%réx%]lR‘lMR|]1 < 1, where R := {diag(r1,...,7n) : 7; > 0}.

One of the main contributions of this theorem is that it provides simple and ex-
act conditions for testing the system’s stability robustness regardless of the number of
perturbation blocks, n. While the three conditions in the theorem are equivalent, each
provides a different perspective and has certain advantages over the others. For example,
the spectral radius condition is in general the easiest to compute. It is particularly useful
when n is large since it can be computed efficiently using power methods. Specifically,
given an M which is assumed primitive (i.e., M* > 0 for some integer k), then it satisfies

the following:

Me+1lg). e Met1g).
m_inﬁ-j‘—l::—i}i < p(M) < ma.xg-ﬂ/j-—,:—-i)l
v (Mkz); P (MEz);
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for any vector z > 0. Furthermore, the upper and lower bounds both converge to p(M)
as k goes to infinity. If M were not primitive, it can be perturbed slightly to become
primitive.
Whereas the spé;tral radius test provides a yes or no answer concerning system ro-
bustness, the second test involving the Linear Matrix Inequality (LMI) is most useful
for providing information about the effect of the individual entries of M on the overall
robustness of the system. This is achieved by translating the LMI condition into n alge-
braic conditions stated explicitly in terms of the entries of M. This is best demonstrated
by an example. Suppose M is a 2 x 2 matrix corresponding to a certain robustness

problem with n = 2. The LMI condition states that robust stability iff the system

T

IN

| M11ll121 + || Maall122
[|May |12y + [| M22]122

IA

T2

has no solution z = (z1,z2) € [0,00) x [0,00)\{0}. Among other things, this implies
that || M11]); < 1; otherwise z = (1,0) would be a solution for the two inequalities. The
first inequality can be rewritten as

|| Ma2]|2

21 < ————— s,
R ) 7 20 P

When combined with the second inequality, we have that

| Ma2|ls )
2 < {[IMaifli— Ml | M22]]y | z2
has no solution in (0, co), which is equivalent to
| M12]l1
Mo ||y —m22lL _  nar o <1,
Mzl 7 Tl l| Mz2||y

This last condition, together with the condition that ||My1]|; < 1, is therefore necessary
for the inequality robustness conditions to hold. Be retracing our steps backwards, it
becomes clear that they are also sufficient. This procedure of constructing explicit norm
conditions from the second robustness condition can be repeated in the same way for
any n.

Finally, the third robustness condition is useful for robust controller synthesis. This

will be discussed in more detail later on.
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Equivalence of the Robustness Conditions in Theorem 2

Before we shed more light on the proof of Theorem 2, we will show that the three,
apparently unrelated, conditions in the statement of the theorem are indeed equivalent.
We will show that ! & 2 and that I < 3. For simplicity, we will do this for an
irreducible }. So suppose that p(M) < 1. It follows that (I — M)~! exists. Since
(I-M)"Y=1I+M+M?+...,all of its entries will be positive. Now if z > 0 is such
that z < Mz, or equivalently, (I — M)z < 0, then multiplying both sides by (I-M)?
implies that z < 0. Thus ¢ must be zero. This is what 2 states. To show that 2
implies 1, suppose I does not hold, i.e., that p(3) > 1. The Perron-Frobenius theory for
nonnegative matrices states that p(M) is itself an eigenvalue of /. Moreover, associated
with p(M) we can find an eigenvector z’ > 0. This implies that p(M)z' = Mz', which
in turns implies that 2 does not hold. Thus, we have demonstrated that 1 < 2.
We now show I & 3 by showing that p(M) = infrer ||[R-MR)||;. By definition,

n n e

IR-*MR||s = max 3 |(R-*MR)ijlly = max y | ~2||Mij]l..
j=1 g=1"%

The expression on the right is also equal to the induced norm of the matrix R-1MR

as a map from (IR, ||.[|l) to itself. Referring to this norm by |.|;, we therefore have

|IR-MR||; = |[R-'MR)|;. Since any matrix norm bounds from above the spectral radius

of that matrix we have:
: -1 o -15F “1TFRY — o FF
éreﬂ;z“R MR|, = éleﬁ‘}‘le MR|; 2 p(R"*MR) = p(M).

But if we choose R = diag(r},...,r}), where (r],...,7.)t is the positive eigenvector cor-
responding to the eigenvalue p(Af), the inequality becomes an equality and the equiv-
alence between I and & is established. It is interesting to note that for the optimum
scalings R = diag(ri,...,r,), all the rows of R~ MR have the same norm. As will be
demonstrated shortly, this fact is used to show why condition § in the above theorem is

necessary for system robustness.

Proof of Necessity and Sufficiency

When n = 1, the spectral radius condition in the theorem above reduces to the condition
[|M]|; < 1. A simple application of the Small Gain Theorem shows that this condition
is sufficient for stability. Necessity has been shown by Dahleh and Ohta [9]. For n larger
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Figure 2.10: Scaled System

than one, we now show that infreg ||[R-!MR||; < 1 is sufficient for robust stability.
We do this with the aid of Fig. 2.10 obtained via the addition of scalings R and R™1,
where R € R. Clearly, the robustness of this system and that in Fig. 9 are equivalent
in the sense that if one is robustly stable, then so is the other one. Moreover, for
the system in Fig. 2.10, RAR~! belongs to D(n) whenever A belongs to D(n), and thus
[lRAR-|| < 1. That being the case, the Small Gain Theorem can be invoked to conclude
that ||[R-!MR||; < 1 is sufficient for robust stability. This holds for any R € R. The

least conservative sufficient condition obtainable in that manner is
inf ||[R-'MR||; < 1.
ReR

We now demonstrate that infrer ||[R-MR||; < 1 is necessary for robust stability.
For simplicity, we do this for the case n = 2. The approach will be to show how one
can construct a destabilizing perturbation A € D(2) whenever infgrer ||[R-*MR||; > 1.
So suppose that infrer ||[R"!MR||; > 1. We have previously shown that this infimum
is in fact a minimum, and it is achieved by an optimum scaling, R, obtained from the
eigenvector corresponding to p(ﬂ ). It was also shown that the two rows of R~ MR will

have equal norms. This can be expressed as follows:
[(R*MR)[ly = [(RT*MR):|ly = |[R-*MR||; > 1.

where (R~!MR); denotes the ith row of R~'MR. The system R~'MR appears in
Fig. 2.11 and has as its input & = (£1,£2) and output z = (z1,2;). In the figure,
¥y = (y1,y2) consists of the output z = (2, z;) after a bounded signal, the output of

a sign function, has been added to it. This bounded signal will be interpreted as an
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Figure 2.11: Scaled System with Constructed Input ¢

external signal injected for stability analysis. The strategy taken will be to construct ¢

satisfying the two requirements:

1. £ is unbounded.

2. £ results in a signal y which satisfies | Pp&i|l1 < ||Pryills for ¢ = 1,2, where Py is
the truncation operator which acts on sequences by preserving the first £+ 1 terms

and setting the rest to zero.

The first requirement on { guarantees that if an admissible perturbation A were to
map y to &, it would be a destabilizing one because the bounded external signal would
have produced an unbounded internal signal £. The second requirement, guarantees
that such an admissible perturbation exists. In other words, if £ and y satisfy the second
. condition, then it is possible to find A;, for ¢ = 1,2, so that A; is causal, has induced
norm less than or equal to one, and satisfies A;y; = &;. If the first requirement is also
met, this A will be a destabilizing perturbation.

For simplicity we shall assume that all M;;’s have finite impulse response of length,
say N. The construction of £ proceeds as follows. = While maintaining [;(k)] < 1
for k =0,...,N — 1, the first N components of £ can be constructed so as to achieve
[(R-'MR)||;. Since ||[(R-1MR)i||; > 1, this implies that ||Py_1z||e > 1, which in
turn implies that ||Px_1y|lec > 2. Next, while still maintaining |£;(k)| < 1, we pick the
next N components of { so as to achieve the second row norm, |[(R-!MR);||;. As a
result we have ||Pon_12i]|lee > 1 which implies that ||Pany_1¥illee > 2. Note that the

second requirement on £ has been met for £k = 0,...,2N — 1. In addition, because of the
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way the first 2,V terms of £ have been constructed, we have

|Panv-1¥illoo 2 |Pean-1ille +1  i=1,2.

This allows us to relax the restriction on [§;(k)| for ¥ > 2N — 1 without violating the
second requirement on £. Specifically, we now allow |£;(k)| to be as large as 2 for
k =2N,...,4N — 1. In the same way as before we can pick £(k) for this range of k so
that we satisfy

lPanv-1¥illeo 2 |Pan-1éillo +1  i=1,2.

which allows us to increase |§;(k)| by 1 for the next 2/V components of £, and repeat
the whole procedure again. From this construction, it is clear that when £ is completely
specified it will be unbounded and hence meets the first requirement. The second re-
quirement is also met since all along £;(k) was chosen carefully so as not to become too
large too soon.

It should be mentioned that the destabilizing perturbation can be taken to be linear
time-varying (LTV), or it can instead be nonlinear time-invariant. So the spectral radius
condition for robustness is also necessary and sufficient whenever the class of perturbation

is restricted to include norm-bounded nonlinear time-invariant perturbations.

Construction of the Destabilizing Perturbation

In the previous section, we have claimed that given £ = {£(i)}2, € {,. and y =
Ay(9)}2y € Lo, 50 that ||Peéilloe < || Pre-1¥illooVk, and for i = 1,2, then there exists
A = diag(Aq,Az) such that Ay = € and ||A;]] < 1. Such a A was shown to be a
destabilizing perturbation. In this section, we prove this claim by explicitly constructing
the perturbation A. It turns out that A; can be either LTV or nonlinear and time-
invariant. We shall construct A; to be of the former type, while A, will be of the latter
type.

So suppose we are given {1 = {£1(9)}2g € lo. and y1 = {1()}2p € { . such
that || Peé1]leo < ||Pry1lleoVk. The construction of Ay is trivial if y; = 0: just pick A,
itself to be zero. So assume y; # 0. We start the construction of A, by identifying a
subsequence of y;, say (y1(%1), ¥1(%2), ... ) which, depending on y;, may or may not be
finite. This subsequence may be defined recursively in the following manner: Let i; be

the smallest integer such that y;(#1) # 0. Given y;(¢n), let 7,41 be the smallest integer
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greater that 7, such that |y1(in+1)| 2 |v1(%.)|. Using the & (¢)’s and y;(%;)’s we are now

ready to construct A; through specifying its matrix kernel representation as follows:

€1£i1§
(i
: 0

G-l o . o
91(1) i,

1132
Ay = vi(t3

: 0

E(is-1) | )
0 -lﬁml 0 ... 0

é1(i3)

y1(3)

Notice that each row of the above matrix has at most one nonzero element, which, by the
choice of the y;(7;)’s, will have its absolute value less than or equal to one. This implies
[|A1]] £ 1. Moreover, A, is clearly causal and it can easily be checked that Ay, = 1,
which is what we wanted to show.

We now construct a nonlinear, time-invariant, and causal perturbation A;. As before,
A, must be so that ||A;]| < 1 and Azys = &. Let A, be defined as follows:

(Azf)(k) = { y(k — 1) if for some integer : > 0, Pe f = PiS:&2
0 otherwise.

Note that A; maps y2 to & and ||A,]| < 1.

2.7.3 Comparisons

It is worthwhile comparing the class of perturbations that have gain less than unity over
£, (which arise in the standard p) with the class of perturbations that have gain less than
unity over {. If the perturbations are restricted to time-invariant ones, the £, -stable
perturbations with gain less than unity lie inside the unit ball of £5-stable perturbations
(for the multivariable case, the unit ball will be scaled by a constant). This follows
directly from the norm inequality between {; and H. If the perturbations are allowed
to be time-varying, then the two sets are not comparable. Earlier, an example was

presented that shows that the H, ball is larger than the ¢; ball. On the other hand, the
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Perturbation class uM)<1 }izxéfR”R“lMRHH,, <1]| p(M)<1

_‘NLﬁ:T)ounded lg-gain— nec - suff suff

NLTV, bounded {.,-gain nec nec nec and suff
NLTI, bounded {,-gain nec suff suff

NLTI, bounded {,-gain nec nec nec and suff
LTV, bounded {;-induced norm nec suff suff

LTV, bounded {,-induced norm nec nec nec and suff
LTI, bounded ¢;-induced norm | nec and suff suff suff
LTI, bounded {., induced norm | nec and suff suff suff

Table 2.1: Comparisons between different robustness criteria

operator A defined by
(af)(k) = £(0)
is £ stable but not £, stable.

A question which might arise is, how do the derived robustness conditions differ from
the Structured Singular Value? The answer lies in the class of perturbations assumed.
While the perturbations here may be nonlinear time-varying (NLTV), nonlinear time-
invariant (NLTI), or LTV for the conditions to be necessary and sufficient, i theory gives
necessary and sufficient conditions only for LTI perturbations. In terms of computation,
the robustness test proposed here is much easier to compute and gives exact answers
for any number of perturbation blocks, n. On the other hand, x is much harder to
compute especially since for n > 3 only an upper bound can be computed. One can use
the small gain theorem to get sufficient conditions for robust stability in the presence of
NLTYV ¢£2 induced norm-bounded perturbations in the same way it was done for the A
norm. In this case, a sufficient condition would be infrer ||R-'MR||g_ < 1. It is not
known whether this condition is also necessary. However, it is not sufficient to guarantee
robustness when perturbations of the type considered in this chapter are present, i.e.,
for { induced norm-bounded perturbations. In contrast, robustness in the presence
of £, induced-norm bounded perturbations does imply robustness to {; induced-norm
bounded perturbations. The relationship between the various robustness conditions is
summarized in Table 1 (In the table: nec, suff respectively mean necessary and sufficient).

In terms of robust controller synthesis, the controller must be chosen so that p(J)

is minimized. The dependence of M on the controller is reflected through the Youla
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parameter, Q, since M can be expressed as [28, 57, 61]
M=M(Q)="T - TQTs,

where the Ti’; depend only on G,. Because p(M) = infrer [|[R-1MR||,, the robustness
synthesis problem becomes one of finding
o inf o AL IIETM(Q)El).

With @ stable and fixed, we have seen that picking the eigenvector associated with
p(M(Q)) will yield the minimum value over all scalings in R. When R is fixed, we have
an {i-norm minimization problem. This problem and its solution will be discussed in
the remaining part of the chapter. So the approach which will be taken to solving the
robustness synthesis problem is to start with an initial R € R. For that R we find
the optimal @ resulting from the norm minimization problem. We then fix that Q and
solve for the optimal R associated with this new @ and so on. Since at each step the
objective function gets smaller and smaller, and since it is bounded from below by zero
it is guaranteed to converge to some value. Unfortunately, this value may not be the
global minimum. If at that point, a satisfactory level of performance robustness has
been reached, we can stop and use the final @ to construct the controller. Otherwise,
the iteration process should be restarted with a different initial scaling matrix in R.
This scheme is similar to the so-called D — K iteration used in the p-synthesis technique
(22, 21]. The main difference is that while the scales used for p-synthesis are frequency
dependent and a convex optimization problem must be solved at each frequency, the
scalings here are not frequency dependent and can be readily found by computing the
eigenvector associated with p(ﬁ ). Such a computation can be done very effectively using

power methods, and no optimization problem need be solved to find the optimal scalings.

2.8 Synthesis of the /; controller

As stated earlier, the {; minimization problem is given by:
Ho = inf HT1 - TzQT3”1 (OPT)
Q stable
In this section, we will show that this problem is equivalent to a linear programming prob-
lem in an infinite-dimensional space. By utilizing the duality theory of Lagrange multi-

pliers, it is shown that in some cases the linear programs are in fact finite-dimensional
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and thus exact solutions for (OPT) can be obtained. For the rest of the cases, the duality 7

theory provides upper and lower approximations of the optimal solution. The use of the
Lagrange multiplier theory highlights the strong resemblance between the ¢; problem
and standard linear programming problems.

The admissible subspace S is defined as:

S = {R € £M*"|R = TyQTs, Q is stable}

The ¢, problem can be interpreted as a distance problem: Find an element in the subspace
S which is closest to the fixed element T;, where distance is measured in the {;-norm:
Previous work [10, 11] used the duality theory for distance problems to arrive at a solution
for (OPT). Here we take an alternate approach using Lagrange multiplier theory, which

is in fact more intuitive and transparent, to arrive at similar conclusions.

2.8.1 Characterization of the Subspace S

In the discussion below, it is assumed that 7, has full column rank =n,, and 7 has
full row rank =nj. It is evident that this captures the most general situation since if
either of these conditions does not hold, we can perform inner-outer factorizations on
T, and T3 and absorb the extra degree of freedom in . Also, it is assumed that there
exist n, rows of T and n3 columns of T; which are linearly independent for all A on the
unit circle. This assumption simplifies the exposition although it is not necessary. In
general, it is enough to assume the above for 1 point on the unit circle [55]. Under this
.assumption, T and T3 can be written in the following form without loss of generality

(possibly requiring the interchange of inputs and/or outputs):
s _ (Tn
.= (1)
Ty
T3 =(Ts1 T32)
where T, has dimensions ny X ny and is invertible and T3, has dimensions ns X nz and

is invertible. Moreover, T3; and T3; have no transmission zeros on the unit circle. Thus
R = T,QT; can be written:

> T21 A 2 £ Rll RIZ
i (8ot = (82 £
ng Q( 31 32) 321 R22

The objective is to obtain a characterization of the feasible set S. Notice that Q) can be

uniquely determined from the equality Ry; = T5;QT3;. As was shown in [10, 44], the
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choice of Ry, is constrained by the zeros of T, T; that are inside the unit disc. There
is only a finite number of such zeros, and each zero is interpreted as a bounded linear

functional on Rj;. In the sequel, we use the following terminology:
Definition 2.8.1 A transfer function G interpolates Ty, T, if T{IIG'Ta'il is stable.

The motivation for this terminology stems from the fact that for T;;'GT5;! to be
stable, G must have zeros at the same locations and directions as the zeros of T; and
T41. Each zero is in fact a bounded linear functional that annihilates the element G, and
thus has a representation inside the dual space of ¢;, with the appropriate dimension.
If these functionals are inside c¢g, then we can view G as the annijhilator in the dual of
co. For example, let G(a) = 0, where G is SISO, and |a| < 1. By definition of G, we
have G(a) = Tiyo9(k)a* = 0. Define z, = (1,02%,a%,...) € ¢o, then the interpolation
condition can be expressed as < 2,,G >= 0. If ¢ is a complex number, then two
functionals are defined, the real of z, and the imaginary of 2,. The multivariable case
carries more details, but the basic idea is the same (see [10, 44]).

The choice of Ry; is constrained further so that the rest of the equations are still

. consistent, which in turn dictates a set of constraints on the rest of the elements of R.

Define the following coprime polynomial factorizations:

-

Tzsz—ll = ﬁz Nz
T:;ingz = N3D;1.
Using these definitions, we state the following result characterizing the feasible set S for

(3.3)

this case [44].

Theorem 2.8.1 Given Ty, T with the assumptions as above, and R € A, there exists
Q € A satisfying R = T,QT; if and only if:

. x 2 Rn R]_z)
R - A =0
9 ( Ns Dz) <Rz1 R22
. - - —~Ns
. R =0
it). (Ru Riz) ( Ds )
i43). Ry, interpolates Ty and T,
The conditions shown in parts 7, 77 are convolution constraints on the ¢; sequence R. The
interpolation condition in the last part can be tightened, since only the common zeros

of T3, and T, need to be interpolated.
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The discussion above shows that the characterization of § can be sumimnarized by
defining two operators,
Vit - R

and

C:epxm 4

where s,r are some integers. The first operator captures the interpolation constraints,
and thus has a finite dimensional range, and the second captures the convolution con-
straints. These two operators can be constructed in a straightforward fashion, book-
keeping being the only difficulty. To overcome this problem, it is helpful to think of R
as a vector rather than a matrix. To illustrate this, let the operator W be a map from

7% to £ defined as follows:

( 7‘11‘(10)

ovare - | 218

\ Foan(k) )

The operator W is a one-to-one and onto operator, whose inverse is equal to its adjoint (a

fact used later). It simply re-arranges the variables in R. The conditions on R presented
in the above theorem can be written explicitly in terms of each component of R.

To construct the first operator V, recall that each interpolation condition is inter-
preted as a bounded linear functional on R. By stacking up these functionals, the opertor
V is constructed. For example, suppose T5; and T%; are SISO and both have N zeros a;

in the open unit disc. Then the matrix V is given by V = VW where

Re(a?) 0 0 0 Re(al) 0 ... Re(a{) 0
Im(@? 0 0 0 Im(a}) 0 ... Im(el) O ...
Vo = : N : Pl : P i=0,1,2,..
Re(a%) 0 0 0 Re(al) 0 Re(dly) 0
Im(ay) 0 0 0 Im(al) O Im(al) 0

For the second operator, C, recall that convolution can be interpreted as multiplication by
a block Toeplitz matrix, in this case with finite memory since Ny, D5, N3 and D3 all have

finite length (the corresponding A-transform is a polynomial). By simple rearrangement,
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the operator is constructed with its image inside £]. Hence C is given by C = TW, where
T is a block lower triangular matrix. For a detailed example, see [11, 44].

To illustrate the construction of the operator 7', consider as an example the coprime-
factor perturbation problem considered earlier for a SISO. The condition for stability

robustness is given by [5]
1[V-eF -U+om]l<s1

In this case, T = 1 and T3 = (N - M). Since M~!N = NM~! with N, M coprime,

the conditions in the above theorem translate to

(R11  Raz) (%) =0

The matrix 7 is then given by:

(m(0) n(0)) 0 0 0 0
(m(1) n(1)) (m(0) n(0)) 0 0 0
T=|(m2) n(2)) (m(1) n(1)) (m(0) =n(0)) 0 0
(m(3) =n(3)) (m(2) =(2)) (m(1) =n(1)) (m(0) n(0)) 0

It is interesting to note that in this example the operator C captures all the conditions
and no interpolation conditions are needed. The conditions presented in the theorem
can be redundant, and can be significantly reduced [55].

The subspace S is then the set of all elements R € "™ so that VR = 0 and CR = 0.
Let by = VT4, b = CT}, and @ = T; — R. The {; optimization problem can be restated
as:

i»eitn'f"" I|21l1 subject to V@ =10b;, C® =b, (OPT).
1

2.8.2 Relations to Linear Programming

It is well-known that in finite-dimensional spaces £;-norm minimization is equivalent to
linear programming. This turns out to be true in general, and can be justified as follows:
Let = &' — &2, with ¢L(k), ¢%(k) > 0. The norm is then replaced by the function
max; 3, 8% (k) + ¢%(k). Define the operator N : £]*" — R™ by (N'®); = T; » ¢15(k).
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The following problem is easily seen to be equivalent to (OPT):

inf u

- subject to
N(@® +8%) - pe<0
V(8! - 8%) = b,
C(3* — 3%) = b,

¢Li(k), ¢%(k) > 0

where e € R™ and eT = (1,1,...,1). It is interesting to notice that if &, ®2 were
restricted to finite impulse response sequences, the above problem is readily a linear
programming problem. This will turn out to be a crucial observation in obtaining ap-

proximate solutions, as will be described later on.

2.8.3 Lagrange Multiplier Formulation

Let X = 7" x 47" xR and Z = R™ x IR’ Xx R’ x {] x {]. Let Px, Pz denote the
positive cones inside X, Z consisting of elements with nonnegative pointwise components.
Define the operator A : X — Z, decomposed conformally with X and Z, and the vector
b € Z as follows:

N N —e 0
y -V 0 by
A=|-Vy vV 0 b= | -b
c -C 0 | b
-C C 0 —by
0
Define the linear functional ¢* = 0) on X. With these definitions, (OPT) becomes:
1
inf < 2,¢* >
subject to
Az <b
zeX,z>0,

where z € X has the form 51
z = (@2) .
L
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All the inequalities should be interpreted with respect to the positive cones. It is in-
teresting that with the above definitions, (OPT) looks very much like a standard linear
programming problem, with the exception that the number of variables and constraints
is infinite.

The Lagrange multiplier is an element inside Z*, the dual space of Z which can be
identified as: Z* = R™ x IR* x R* X ¢} X cj. (Here we have assumed that Z is equipped
with the weak* topology, not the norm topology.) The dual cone P} again consists of
the nonnegative elements in Z*. The Lagrangian can be defined as

L(z,z*) = {< z,¢* > + < Az - b, 2" >}
={<z,*+ A" > - < b, 2" >}
where A* : Z* — X* is the adjoint operator of .A. From the theory of Lagrange

multipliers [43], the minimum solution can be obtained by performing an unconstrained

minimization of L, i.e.,

po = sup inf{< z,c* + A*z* > — < b,2* >}
2#>0220

Clearly for pg to be finite, i.e yg > —o0, ¢* +.A*2* > 0 and hence the above infimization

is achieved for ¢ = 0. This gives a dual formulation of (OPT) summarized as:

po = sup < b,—-z*> subject to c¢* +.4%z* >0 (DOPT).
z* 20

To evaluate this explicitly, let A*, z* be given by:
n
N-u vt _Vt Ct __C- oy
A*= | N* -y* y* -+ cC* 2 =1 a
-0 0 0 0 B

B2
By direct substitution, (DOPT) is converted to

po =sup < by, o1 —az > + < by, 1 — B2 >

subject to
N*'n+V*(a; —az) +C* (81— B2) 2 0
N*'n=V*(ay —az) -C*(B1 —B2) 2 0

m

S om<1

=1

ai, (12,,61,,82,7) 2 0.
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Finally, substituting a = a; — ay and 3 = 81 — (B we get
Mo = sup < blaa >+ < b29ﬂ>
subject to

N < Va+C B <N

m
Sm<1L,720

=1

aceR’, BEc.

(DOPT)

This dual formulation sheds a new light on the optimization problem. In our context,
it will provide two important results: the existence of finite-dimensional duals for specific
classes of problems, and the ability to construct suboptima.l solutions that are within a
prescribed € from the actual minimum.

Comment: The computation of the adjoint operators is quite simple once the operators
are already constructed. Recall that V = V_ W; hence the adjoint operator V* =
W-1VZ, Similarly, C* = W-!TT. Matrix representations of the operator A/ and its

adjoint are obtained in a similar fashion.

2.8.4 Exact Solutions for a Class of Problems

Let the space S be characterized solely by interpolation conditions. This is the situation
when both T, and T3 have full row rank and column rank respectively. In this case C = 0
and b, = 0. The dual problem (DOPT) involves only a finite number of variables and
thus it is a finite-dimensional problem. The constraints however are infinite. Since the
elements of V* were constructed from zeros inside the unit disc, the entries will eventually
decay and only a finite number of the constraints are active. A bound on the number of
such constraints can be derived [10]. The problem is now a standard finite-dimensional
linear program, which can be solved exactly. The solution to the primal problem (OPT)
can be constructed either by the alignment conditions, or by observing that the dual of
(DOPT) is exactly the primal problem.

2.8.5 Approximation

In the sequel, we will assume that CT; = b5 is a finite impulse response sequence. This
condition is equivalent to saying that there exists a FIR feasible solution for (OPT). If
this condition is not satisfied, then the problem can be modified so that the condition
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will hold [11, 44]. Upper approximations of ug can be readily obtained from the primal

problem. Define iy as follows:

. AN = ming
subject to
N(81+ &%) —pe <0
V(@ -3 =b
C(®! - &%) = b,
81508, #5() > 0

ok (k) = 0, ¢%(k) = 0Vk > N.

Since C is constructed from FIR sequences, this optimization will involve a finite number
of variables and a finite number of constraints. It is evident that fiy is a non-increasing
sequence satisfying po < Ay for all V. Also, since a feasible FIR solution exists, then
g is finite for IV large enough. Since FIR solutions are dense, it follows that iy — po
as N — oo. For each iy a solution for the primal problem can be constructed. The
difficulty with this procedure is that it is not clear how far the solution is from optimal at
any given V. This will be overcome by presenting lower approximations of the problem.

It is interesting to notice that the dual of this problem is obtained through truncating
the constraints of the dual problem (DOPT). Another approximation obtained from the
dual problem can be obtained by truncating the variables 8 € cj [5, 55]. Define u, as

follows:
By =max < bj,a>+ < by, B>

subject to

N < Va+CB< Ny

iﬂiil,TIZO

i=1

a€R’, B €ch, B(k)=0VEk > N.
It is evident that g, < po and that gy — po as N — co. The former assertion is due
to the fact that the new problem has fewer degrees of freedom, and the later is due to
the fact that finite sequences are dense in cy. The above problem is not immediately
a finite-dimensional problem—the constraints due to the operator V* are still infinite;

however, only a finite subset of these are active as it was in the case where C was equal
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to 0. A complete discussion of the computation of this problem is given in [55]. Clearly,

there is no feasible solution for the primal problem for any of the y,’s.

2.8.6 Computations

In the case where C = 0, the ¢; minimization problem is solved exactly. In all other cases,
only approximate solutions are obtained through obtaining upper and lower approxima-
tions of pg. The major computational burden is in fact obtaining the operator V, since
it requires the computation of the zeros of T;, T5; and their multiplicities. Work on the
computational aspect of this problem is in progress [24].

To obtain fast solutions that do not necessarily capture the structure of this problem,

one can follow the approach in [3] in which one seeks direct FIR solutions for Q. This

‘problem can be posed as a linear programming problem which can approximate the

actual solution arbitrarily closely. However, unless one invokes duality, the difference
between the approximate and actual value of o remains unknown.

It is interesting to note that exact solutions for special problems with C # 0 have been
constructed in [54]. Although existence of {; -optimal solutions is guaranteed (under mild
conditions, namely no interpolations on the unit circle), it is not known whether these
solutions are rational or not. If C = 0 optimal solutions are FIR, and hence rational.

The general case is still an active area of research.

2.9 Conclusions

This chapter gives an overview of the problem of synthesizing optimal controllers to
deliver performance specifications in the time domain, in the presence of bounded but
unknown exogenous inputs. A general framework for the robust performance problem is
presented from which necessary and sufficient conditions are derived. These conditions
were related to the spectral radius of a matrix constructed from the configuration of
the closed-loop system. Alternate equivalent conditions are also discussed in terms of
linear matrix inequalities. These conditions are in turn used in the synthesis problem,
which requires the solution of an £, optimal control problem. A solution of this problem
using the duality theory of Lagrange multipliers is used. This approach highlights in a
non-trivial way the relations between ¢, optimization problems for infinite-dimensional

systems and infinite linear programming problems. In fact, the solutions presented ex-
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ploit the problem structure and do not rely on some general theory for solving infinite
linear programmihg problems, since such a theory does not exist.

This chapter discusses only discrete-time problems. The interest in discrete-time
systems stems from the fact that most controllers these days are digital controllers and
are interfaced with the continuous-time plant through A/D and D/A converters. A better
formulation should have a hybrid system consisting of both continuous- and discrete-time
dynamics. Such systems have recently received considerable attention from the control
community and are known as sampled-data systems. A formulation of the {; sampled-
data problem can be found in [1, 25, 36, 53] in which it is shown that synthesizing a
digital controller for a continuous-time plant can be done by solving a purely discrete-
time problem. This motivates the earlier discussion.

There are other related problems that are not discussed in this chapter. The problem
of designing controllers for tracking a specific trajectory is an important problem and was
solved in [12]. The £, synthesis approach has also been extended for periodic and multi-
rate sampled plants [15]. Also, this theory was successfully incorporated as part of an
adaptive control scheme, in which the stability of the closed loop system was guaranteed
for a larger set of plant uncertainty [16, 59]. Finally, a case-study for the applicability
of this theory was reported in [13] in which a {; controller was designed for a model of
the X — 29 aircraft.

A pressing research problem is the understanding of the structure of the optimal ¢,
controllers. Such an understanding will not only add insight into the problem, but will
also offer simpler ways of computing the optimal solution. This has been the case for
the H,, and H; problems. Some interesting results in that direction are reported in
(54| in which exact solutions for the infinite-dimensional linear programs arising in some
special non-square problems have been computed. Also, it was shown in [23] that optimal
solutions may require a dynamic controller even though all the states are available. The
existence of some separation structure of the ¢; problem (similar to that of the H
problem [20]) is still under investigation.

Another important research direction is the synthesis problem by exactly minimizing
the spectral radius function, rather than the iterative scheme suggested. The iterative
scheme is guaranteed to converge only to local minima and hence there is a need for
looking for another approach for minimizing this function.

In this chapter, a comparison between the spectral radius function and p is sketched.
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At this point, it is not known whether there exist exa.mples‘ in which the two methods

exhibit extreme behavior. Research in that direction is currently in progress:
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Chapter 3

State Feedback ¢;-Optimal
Controllers can be Dynamic

This chapter considers /;-optimal control problems given by discrete-time systems with
full state feedback, scalar control and scalar disturbance. Motivation stems from the
central role that this problem structure played in the development of the X, and H
theories. First, systems with a scalar regulated output are studied (singular problems).
Sufficient conditions are given, based on the non-minimum phase zeros of the transfer
function from the control to the regulated output, for the existence of a static £;-optimal
controller. A simple way to compute the static gain is provided, using pole placement
ideas. It is shown, however, that having full state information does not prevent the
{,-optimal controller from being dynamic in general, and that examples with arbitrarily
high order optimal controllers can be easily constructed.

Second, problems with two regulated outputs, one of them being the scalar control,
are considered (non-singular problems). It is shown, by means of a class of fairly general
examples for which exact {;-optimal solutions are constructed, that such problems may
not have static controllers that are {;-optimal. Thus concluding that a “separation

structure” does not occur in these problems in general.

3.1 Introduction

Since Dahleh and Pearson ([10],{11]) presented the solution to the ¢; optimal control
problem, there has been increasing interest in understanding the basic properties of such

problems ([5],[44], [45] and [54]). Considering that in the case of H; and H, optimization
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([20],(65]), state feedback optimal controllérs have a very special structure (i.e. static),

it seems only natural to ask how full state information affects the ¢; optimal solution.
In particular, under what conditions (if any) there exist a static linear controller that
achieves optimality. This chapter presents results regarding this question, for systems
with scalar control and scalar disturbance. In particular, two different types of problems
within this class of systems are considered: a) those with a scalar regulated output,
denoted as singular problems, and b) those with two regulated outputs, denoted as non-
singular problems, where one of the outputs is the scalar control signal. For systems
in a), it is shown that there exists a static controller which is ¢;-optimal if the non-
minimum phase zeros of the transfer function from the control input to the regulated
output satisfy a simple algebraic condition. Violating such condition, however, may
result in a dynamic ¢;-optimal controller of possibly high order (generally when the non-
minimum phase zeros are “close” to the unit circle). For systems in b), it is shown by
means of an example that optimal controllers are dynamic in a broad class of cases which
are common in control design. The difficulty in analyzing the non-singular problem is
that it is not straightforward to compute the optimal solution, as it is the case with a
~ singular (i.e. square) one. For the given non-singular example, the optimal solution is
constructed and shown to require a dynamic compensator.

The chapter is organized as follows. Section 2 formulates the singular problem along
with some basic notation. Sections 3 and 4 present results corresponding to singular
problems involving minimum and non-minimum phase plants respectively. Section 5

. examines a non-singular problem by means of a general example, followed by the con-

clusions in Section 6.

3.2 Problem Formulation

Consider the following state-space minimal realization of a full state feedback system

with scalar input disturbance, scalar control, scalar regulated output:

where A € R™ ™, by and by € R™*!, ¢; € R'*™, and dy5 € R. For any internally sta-
bilizing controller k, let ¢ = {#(0), #(1),#(2),...} denote the closed-loop pulse response
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sequence from the disturbance to the regulated output. Then, the problem can be stated

as follows:

inf, 114l (3.

where ||4]|, ef 3=: 1¢(7)|. Using standard results in the parameterization of all stabilizing
controllers (see [28]), problem (3.1) can be rewritten as follows:

inf |Jh—uxgxv, (3.2)
qeellxn

where £;™*" indicates the space of all m x n matrices with entries in £; and * denotes
convolution. Thus, A and u € {;, and v € £;™%!., Let the )-transform of a right-sided
real sequence z = {z(0),z(1),%(2),...} be defined as

>}

2(A) =Y z(k)Ak

k=0
where )\ represents the unit delay. Then, a state-space realizations for h, u and v can be
found by using the state-space formulas in [28] with the observer gain matrix, H, equal

to —A. For this specific choice, the realizations are:

R(A) = A[Af, Abi,er + diaf,cib] (3.3)
ﬁ(’\) = [AfabZ’c1+d12f3d12] (3’4)
#(A) = [0,b1,1,0] = Ab; (3.5)

where A()), #()) and #()) denote the A-transform of h, u and v; A; Ef A+ b, f
[4,B,C, D] \C(I - A)"'B+D

and f is chosen so that all the eigenvalues of A are inside the unit disk.

The following result, which will be needed in the next section, is proved in [10]

Theorem 3.2.1 Assuming i(-) and 9(-) have no left and right zeros respectively on the
unit circle, there exists q,p: € £;1%™ that achieves the optimal norm in problem (3.2).

Moreover, the closed-loop optimal pulse response, ¢op; = h—u*q,p: *v, has finite support.

3.3 Singular Problems with Minimum-Phase Plants

This section considers the case where the transfer function from the control input to

the regulated output is minimum-phase except for an integer number of unit delays
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(i.e. zeros at the origin in the A-plane). It will be assumed throughout that (4,b;) is

reachable.

Theorem 3:3.1 For such a system, the static feedback gain, f*, that places the eigen-
values of (A + by f*) at the exact location of the minimum-phase zeros of [A, by, ¢y, d ]

and the rest at the origin is {;-optimal.

Proof. Consider using f* as the state feedback gain in the parameterization described

above. Then, after carrying out all stable pole-zero cancellations,
W(A) =, A7

where 7 is the number of unit delays in [4, b3, ¢1,d12] and 4, is a scalar depending on r.
‘In what follows, the cases where » = 0 and » > 0 will be treated separately.

i) If r = 0, then dy3 # 0, ¢; + dy2 f* = 0, and 4(A) = d;2. Also, from equation (3),
R(A) = c1 by A = (e1by + di2f*by — d12f*h1)A = —dy2f*b,

= $(A) = —d12f*b1 A — d12G(A) b1\

Thus, the ¢;-optimal solution is given by gop:(A) = — f*, and iz,,pt(/\) = 0. Furthermore,
using the state-space equations in 28] for computing the optimal controller, it can be

shown after a little algebra that kop:(A) = f*.
ii) If » > 0, then dy; = 0, c;A%. = 0 by construction since (A4, bz) is reachable. Also
w(A) = clA}jlbg AT. Again, from equation 3,

A(A) = c1bsA + 14017 + c1 Ape Abi A% + - - + ¢ AFTT Ay AT
Therefore, the closed-loop pulse response is given by

d(A) = cbid+c1Ab At +ciAp Ab N3+

+ 1457200 + 1 ATTHA — B2§(N))br A
Clearly, ¢ does not affect the first r 4+ 1 elements of ¢ (i.e. ¢(¢),7 = 0,1,...,r). Then,
the best possible choice of g, in the sense of minimizing the {;-norm of ¢, is the one that

makes ¢(i) = 0 for i = 7 + 1,7 4+ 2,..., and is achieved by letting g,p:(A) = — f*, since
Hr+1)= clA’]}.bl = 0. Again, the corresponding /;-optimal controller is f*. |
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Corollary 3.3.1 The {;-optimal closed-loop transfer function of the system considered

in Theorem 3.3.1 (with r > 0) is given by:

- Popt(A) = €1 Y A1Nb,

i=1
Proof. It follows from the fact that c;A%.b; = 0 for i = 0,1,...,r — 2. The details are
left to the reader. [ ]

Put in words, Theorem 3.3.1 says that there is nothing the controller can do to invert
the delays in the system. It can, however, cancel the rest of the dynamics of the system

due to the absence of non-minimum phase zeros in the transfer function from the control

. input to the regulated output. This results in an optimal closed-loop pulse response that

is equal to the open loop pulse response in its first (r + 1) elements and zero thereafter.
It is also worth noting that Theorem 3.3.1 is directly applicable to the discrete-time
LQR problem, where Y_; ¢? is minimized. More precisely, the asymptotic LQR solution
(see [40]) where the weight on the control tends to zero (i.e. cheap control problem) is
identical to that of Theorem 3.3.1.

3.4 Singular Problems with Non-minimum Phase Plants

This section considers those cases where [A4, by, ¢1,d12] has r» non-minimum phase zeros
not necessarily at the origin (i.e. A = 0).

Again, we use the same parameterization as in the previous section. That is, we
choose f* to place (n — r) eigenvalues of A} at the exact location of the minimum phase
zeros of [A, by, ¢1,d12] and the rest (r) at the origin. Then, from the discussion in section
3, A(A) is polynomial in A and of order (r + 1), @(}) is polynomial too, but of order 7,
and 9() is simply Ab;. Therefore, the closed-loop transfer function can be written as

follows:

1=1 i=1

) = (91 T2 - ) - g2 [T - ﬂj)&m) A% 300) 2 (3.6)

where g;,9; € R, a;’s are the zeros of h, B3;’s are the (non-minimum phase) zeros of
@ and [A, by, c1,d1z), and §(A) & §(A)b; € . Note that ||¢ll, = ||¢ll;. Also, by
Theorem 3.2.1, &opt(z\) is polynomial in A, which implies that (}'ope(/\) is polynomial in
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A. Thus, the optimization problem is equivalent to the following linear programming

(primal) problem: for a sufficiently large but finite s,

ngnij |#(3)] (3.7)

=0
st > @) Bi=a [[Bi-ci), i=1,2,...,r
=0 i=1
In the above we have assumed that the 3;’s are simple zeros to simplify the formulation
of the interpolation conditions. The following results, however, carry over to the more
general case,
The following theorem by Deodhare and Vidyasagar [17] will prove useful. It is stated

with no proof.

Theorem 3.4.1 The support of ¢ in (3.7), denoted as (s + 1), equals the number of

constraints r, if
r—-1

Slal <1 (3.8)

1=0
where []7_1(A = B;) = A" + @1 A" 4o 4+ a1) + ao.

Now we are ready to present the next result.

Theorem 3.4.2 Let [A,b,cy,d12] have r non-minimum phase zeros, then if (3.8) is

satisfied, f* is {;-optimal.

‘Proof. By Theorem 3.4.1, ;Sopt(/\) is of order (r — 1). Then, considering the order of
each term in (3.6), it is clear that &'opt(»‘\) has to be constant and such that ¢(r) = 0.
Using the state-space formulas (3), (4) and (5),

0= ¢(r)

il

(c1 + diz F*) AT (Aby — b2 Gope(0))
= (c1+ diz f1) AT (4 - b2 4ope(0))by
But, by construction, (¢1 + di2f*)A%. = 0 due to the stable pole-zero cancellations and

the fact that the rest of the poles are placed at the origin. Therefore, gop¢ = — f* is the

required value, and Eopg = f*. [ ]

Observation: It remains to consider those cases where the non-minimum phase zeros

of [A, by, ¢1,dy2| are such that they violate condition (3.8). Theorem 3.4.1 established a
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sufficient condition to determine the order of the optimal response. If (3.8) is violated,
the optimal closed-loop response may be of higher order, possibly greater than n, but
still polynomial. If that is the case, then the /,-optimal controller is necessarily dynamic,
since the higheég order polynomial response that a static controller can generate is n by
placing all closed-loop poles of the plant at the origin. Any polynomial response of order
greater than n, say IV, requires a dynamic compensator of at least order NV — n. Thus,
Y i=dlai] > 1 can be viewed as a necessary condition for the optimal controller to be
dynamic.

The following example shows that a large class of state feedback singular problems
have this property.

ExaMPLE 1: Consider the following parameterized family of plants (with parameter

K)y

2

Pu(A) = - 3.(;;)(23;5:\ :51; 1)

Assume that the controller has access to the state vector and that the disturbance acts
at the plant input. The non-minimum phase zeros relevant to this theory are given by
the roots of kA2 — 2.5\ + 1, as a function of . It is easy to see that for k > 3.5 condition
(3.8) is satisfied and the optimal controller is f*. By applying the methods of [10], it
can be shown that for k = 3.5 the optimal solution is no longer unique. Actually two

possible solutions with ||@ope}|, = 7 are:

R _J A-252% 43523
¢opt,¢=3.s = A—=1.122 44,924

The first is achieved with f* while the second requires a first order controller. (The
non-uniqueness is related to the occurrence of weakly redundant constraints in the linear
program.) Note that for this value of &, the left hand side of (3.8) is equal to one.

For 1.5 < k < 3.5 condition (3.8) is violated and the optimal solution has the following

general form:
Bovtrscncss = A+ Bu(2)A2 + du( W) A=
As k \, 1.5, one of the non-minimum phase zeros approaches the boundary of the unit
disk while @.(2) — —1.5, ¢.(N.) — 0.5, and, most remarkably, N, / oco. This
implies that the optimal controller can have arbitrarily large order. For instance, if
k = 1.51, then
Poptrcy s = A — 1490722 + 0.5776112
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"and the optimal compensator is of order 9.” It is also interesting to point out that for
K < 1.5 one of the non-minimum phase zeros leaves the unit disk and condition (3.8) is
wcis = A—1.5)% and ko = f*. With regard to the

optimal norm, it drops from a value arbitrarily close but greater than 3 to a value of 2.5

again satisfied. In this case, q‘Sop,

in the transition.

Similar behavior has been reported in [46], for the case of sensitivity minimization
through output feedback. The above example shows that the nature of such solutions
have comparable characteristics even under full state feedback. There is one difference,
however, which reflects the structure added to the problem. In [46] a parameterized
family of first order systems was constructed with arbitrarily high order optimal con-
trollers, while this setup requires at least a second order plant with two non-minimum

- phase zeros away from the origin. Note that condition (3.8) is automatically satisfied

otherwise.

3.5 A Non-Singular Problem

So far we have considered problems with a scalar regulated output. One could argue that
sensitivity minimization problems, such as the one in the above example, where a measure
of the control effort is not included in the cost functional (i.e. singular problems), may
have peculiar solutions that could hide the structure of the more general non-singular
case. To clarify this point, we will consider a variation of the above example by including
the control effort in the cost functional. That is,

= inf
# k—latab. ”

S 1 int, maz (gl viidal) (3.9)
where ¢, represents the closed-loop map from the disturbance to the output of the plant,
@2 represents the closed-loop map from the disturbance to the control input, and v is a
positive scalar weight. The fact that there are two regulated outputs and only a scalar
control makes this problem of the bad rank class (i.e. two-block column problem, see [11]
and [44]). This implies that a linear programming formulation of the solution will have,
in general, an infinite number of non-zero variables and active constraints (Theorem
3.2.1 no longer holds) making the construction of exact solutions a non trivial task. For
the following example, however, it is shown that the optimal response has finite support,

and that an exact solution can be computed by the methods in [54] and [24].
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ExAMPLE 2: Consider problem (3.9) for the parameterized family of plants of Ex-

ample 1. By expanding each term, Equation 3.9 can be rewritten as:

o . h]_ U1
= inf - *qxv 3.10
p qell“‘"” ( By ) (7u2 ) g H1 (3.10)
where, according to the previous parameterization (and using the same notation),
’:11()‘) = AAfe, Abry e + diaf*, e1b]
hZ(A) = ’\[Af‘7Abls f‘v O]
1(A) = [Afey b2 ¢1 + diaf*, di) (3.11)
1?"2.’(’\) = [Af's b2, f*, 1]

With the particular problem data and « = 2, #(A) has a right zero at the otigin and
(21(A) 712(2))T has no left zeros. Then, the optimization problem can be posed in the

primal space, {1, as follows ([11]):

#1

= inf 1
H= ondn I Y 92 ”1 (3.12)
- subject to:
¢1(0) = 0
$2(0) = (3.13)
(uz * ¢1 — Uy * ¢2)(k) = (’lL2 * h1 -~ Uy * hz)(k), k= 0, 1,2, ce
Or in the dual space, £, as
v}
p=sup > a(i)(uz*hi - us % hy)(3) (3.14)
,B1,82,71,72 i=0
subject to:
| (TZ0 @i+ k)uz(i)) + (0%)81] < 7
[ (T20 a(i + k)ui(d)) = (0%)8:] < = (3.15)
T1 + T2 S 1

for k =0,1,2,..., where a € £, and $1,85, 71,72 € R.

Let iy denote the value of (3.12) when the constraints ¢;(k) = O forallk > N,i=1,2
are appended to (3.13), and let p, denote the value of (3.14) when the constraints
a(k) = 0 for all k > M are appended to (3.15). Then, clearly

By <1 < Ty (3.16)
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for all positive integers M and N. We will refer to these problems as the truncated primal =~

and the truncated dual problem respectively. Next, let ¥ = 0.1, N = 5 and M = 13, then
the following are exact solutions to the truncated primal and truncated dual problems

(within 15 digits accuracy):

$1(A) = A= EIA7 4 SN 4 RN ) (3.17)
¢2(’\) —_ __QgESéGA + 11585985.4A2 + 8955558.4/\3 + 12;8528.2/\4 - 1?_588_§A5
0.970131421744327
0.0298685782556741
18.1617920759050
42.7538829151732
0
" w 37.7844820452347
72 ~3.29789187316069
5, -1.65259869560044
5, —0.401868143803625
(0) 0.309029878922354
=1 0.572287131426917 (3.18)
: 0.545909685694633
a(13) 0.411177830532670
0 0.255951734446358
\ ) 0.129285041919450
0.0273249362257737
—0.0155520615496705
~0.0181682559221378
0

/
It is easy to verify using the values in (3.17) and (3.18) that p,, = s = 1192/279 =
4.2724, thus, from (3.16), p = 1192/279 and (3.17) is the exact solution to the full primal
problem (3.12). Therefore, since such solution has finite support and is of fifth order,
the optimal controller is necessarilly dynamic and of second order. Also note that the
optimal closed loop response is such that ||¢:[|; = 7{|¢2|| = p.

It is also interesting to consider the singular problem corresponding to this example
(i.e. Kk = 2 and ¥ = 0). The optimal solution (which is obtained by eliminating the
second row and solving the resulting good rank problem) is given by:

$1(A) = A—FAT 41BN

$a(N) = —1036) 4 144632 | 1304433 | 1(1526/\4 _ z%§.4/\s

: (3.19)
68 68 68
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where [|¢1]l, = 286/68 ~ 4.2059 while ||¢;]l, = 4374.4/68 ~ 64.3294 is clearly larger
since it was left out of the optimization. In fact, the above solution is valid for v €
[0,286/4374.4] since for any 7 in such interval ||¢1]|; > 7||$2ll;. Moreover, for any
such v, the ll-oi)timal controller is dynamic and of second order since the optimal ¢, is
polynomial and of fifth order. This alone constitutes a family of problems, parameterized
by 4 € [0,286/4374.4], requiring dynamic optimal controllers.

All this indicates that given a non-singular (two-block) problem, the optimal con-
troller may very well be dynamic, whether or not the two regulated outputs impose
conflicting goals (i.e. active constraints). Further, it can be shown that even when the
corresponding singular problem has a static optimal controller, the non-singular prob-
lem may require a dynamic one. This will happen only if ¥ is large enough to make the
second row of the cost functional active in the optimization.

A last question remains to be answer: given a full-state feedback problem with a
dynamic ¢;-optimal controller, is it possible to find a static controller that achieves an
£,-norm arbitrarily close to the optimal? Again, it is easy to show via a counter example
(numerical) that this is not the case. In fact, a simple second order problem can show
that the gap between the norms achieved by the optimal and the static-optimal controller

can be significant.

3.6 Concluding Remarks

This chapter presented a study of the ¢; optimization problem for systems with full
state feedback, scalar disturbance and scalar control. Two classes of problems were
considered: a) singular problems with a scalar regulated output, and b) non-singular
two-block problems with two regulated outputs, one of them being the control sequence.
The main purpose of the study was to determine whether or not there is always a static
controller which is £;-optimal. In the case of singular problems, a sufficient condition was
given, based on the non-minimum phase zeros of the transfer function from the control
to the regulated output, for the existence of a static ¢;-optimal controller. The optimal
gain is such that it places a subset of the closed-loop poles at the exact location of
the minimum phase zeros of the transfer function from the disturbance to the regulated
output and the rest at the origin. Then, it was shown by means of general examples, that

both singular as well as non-singular problems may require dynamic optimal controllers
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of arbitrarily high order, in spite of the perfect state information. This adds to the
observations made in [46] where singular problems with output feedback were considered.
In fact, it can be shown using similar arguments that full information problems (where
the disturbance is measured exactly) also have these characteristics.

Although the systems in question were simple, it is safe to conclude that more com-
plex MIMO state feedback ¢; optimization problems will also have these characteristics
in general. Therefore, it is doubtful that the study of the full state feedback problem will
render a “separation structure” similar to the ones found in H; and H, optimization
theory ([20], [65]).
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Chapter 4

Rejection of Persistent Bounded
Disturbances: Nonlinear
Controllers

This chapter considers nonlinear time-varying (NLTV) compensation for linear time-
invariant (LTT) plants subject to persistent bounded disturbances. It is shown using two
different approaches that using NLTV compensation instead of LTI compensation does
not iimprove the optimal rejection of persistent bounded disturbances. The first approach
is to derive a bound on the achievable performance over all stabilizing NLTV controllers.
Using results from ¢;-optimal control, it follows that in some special cases this hound
can be achieved by LTI compensation.‘ This approach involves the introduction of an
operator analogous to the Hankel operator in H*-optimal control and is of independent
interest. The second approach is to assume the NLTV controller is sufficiently smooth
to admit a time-varying linearization. This time-varying linearization is then used to
construct an LTI controller which achieves the same performance as the original NLTV
controller. These results extend previous work by the authors regarding linear time-

varying compensation.
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Notation
LTI := linear time-invariant
LTV := linear time-varying

NLTYV := nonlinear time-varying
foo = {f = (oo F(=1), £(0), £(1), £(2)s--) [ fll oo = sup [£(m)] < oo}
lo(Z4):={f€ls: f(n)=0,Vn < 0}

b = {f € oot Il X 1f(n)] < oo}

= {f € £] lim 2(k) = o}

Iz
T := —_—
1Tl= o WA,

F#0

) = {J 50

4.1 Problem Statement

In this chapter, we consider the use of NLTV compensation to achieve optimal distur-
bance rejection with LTI plants. This problem has been considered in (2, 27, 37, 39, 51].
In [27, 37, 39], it was shown that NLTV compensation does not improve the optimal rejec-
tion of finite-energy (i.e., £2) disturbances. In [51], it was shown that LTV compensation
does not improve the optimal rejection of persistent bounded (i.e., {.,) disturbances.
This was extended to continuous-time systems in (2]. Possible advantages of NLTV
control are discussed in [{38] and references contained therein.

The results of [2, 51] hold for LTV compensation only. In this chapter, we consider
nonlinear compenstation with persistent bounded disturbances. It is shown using two
approaches that NLTV compensation again does not improve the optimal disturbance
rejection of £, disturbances. The first approach involves the introduction of an operator
analogous to the Hankel operator in H*-optimal control which is of independent interest.
This operator leads to a bound on the achievable performance which can be achieved by

LTI compensation. The second approach uses a linearization of the nonlinear controller
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to construct an LTI controller which achieves the same performance as the original NLTV

controller.

In the discussion that follows, familiarity with the disturbance rejection problem
framework and related notions of stabilization, causality, and well-posedness is assumned
(cf., [28, 60]). In particular, unless otherwise specified, all operators are norm-bounded
causal mappings over signals with support (-0, x).

To set up the problem, let T, (K ) denote the closed-loop mapping from the exoge-
nous disturbances, w, to the regulated variables, z, as a function of the controller K.
Let N7y denote all norm-bounded causal NLTV operators on £,. Let L7y denote the
subset of Ny which are linear. Similarly, let L7 denote the subset of L7y which are

time-invariant. The A transform of an element H € L1y will be denoted by H(}). It can

be shown (cf., [28, 56]) that the problem reduces to comparing the following quantities:

ENL 4f inf {I|ITz(K)|| : K is any stabilizing NLTV controller}

= _inf ||Ty - T2QT3.
ot Ty — T2QT3||
urv 4 inf {||Tzw(K)|| : K is any stabilizing LTV controller}

= inf ||Ty — ToQTs|l.
Qécwll 1 — T2QTs||

prr = inf {||T.(K)|| : K is any stabilizing LTI controller}

= inf ||Ty - T2QT5|.
o2 1T~ 10T

Here, T 23 € L1y are discrete-time multiple-input/multiple-output systems deter-
mined by the discrete-time LTI plant and disturbance rejection problem under considera-
tion. In the remainder of this chapter, any extra assumptions on T} ; ;3 will be introduced

as needed.

The following theorem concerns LTV compensation:

Theorem 4.1.1 ([51]) prv = prr.

In this chapter, we show that under certain conditions uyr = prr.
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4.2 Main Results

4.2.1 A Hankel-like Operator

In this section,; Hankel-like operator (cf., [28]) is defined for general operators on /..
This Hankel-like operator leads to a lower bound on the achievable performance over
NLTV compensators. In the special case where T, = I, it is shown that this bound
may be achieved by an LTI compensator. In this section, T}, 3 are assumed to be
single-input/single-output with the exception of Example 2.2.

Let a1,...,an, b1,..., b, be the zeros of the transfer functions of T, and T3 respec-
tively inside in the open unit disc. For simplicity, assume they are real and distinct. The

forthcoming analysis still goes through in the general case. Define the functions

ug;(k) =aj*  VE<O0,j=1,...,n

7

o (k) =b7*  VELO0,j=1,...,m
Let
U= '9pan{ua;}
V= 3?‘177'{”5,'}
U and V are subspaces inside {, supported on the nonpositive integers. Given any
operator H on {.,, define a Hankel-like operator as follows

Tg:U+V =i,

u+v—-I_(uxHe+ex Hv)
where II_ denotes the projection on the nonpositive integers, x denotes convolution, and
e denotes the unit pulse at the origin,

1, k=0
e(k):{o, k # 0.

In the case of an LTI operator H, the operator 'y has a simple representation. Let

u+veld+YV, then
utv =) aiug + Y Biv,
i=1 =1
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and

O_(H(u+v))= Za, (@;)uq; + ZﬂxH(b Jus,;

i=1 =1

The norm of I'fy is defined as
HrH” - sup Her”oo
reusv, s#0 || flleo

In the case where H is LTI, this norm can be computed exactly via solving a linear

programming problem. This is captured in the following proposition.
Proposition 4.2.1 Let H be an LTI operator with A-transform H. Then
ITwll = maxza, (a:) + }:ﬁ,H(b

i=1

subject to

i aiaf + iﬂia?

i=1 i=1

<1, Vk>o0.

Proof. By direct computation,

n

Z (ai)a ~”+Zﬁ, (b:)b7*

i=1 i=1

Tl = maxmax

sub ject to

iaia{k + iﬁib;—k

=1 -1

<1,Vk < 0.

It remains to be shown that the function to be maximized achieves the maximum at

k = 0. To prove this, assume it achieves the maximum at k¥ = k*. Let &; = aiag'k',

B; = Bib; k* Then &;,§; are feasible solutions which gives the same value at k = 0. K

The following theorem establishes the connection between ¢!-optimal control and the

above Hankel-like operator.

Theorem 4.2.1 ([10])

prr = ||Tn ]
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It is interesting to notice that when Q is LTI, one can easily show that ||I'z,|| is a

lower bound for urr as follows. Let @ = T — T,QT3 with impulse response ¢ € {1, Then

Il

8] = |ITy - T2QTs)| > sup IM_(usd*e)+I_(e*d*v)le

welvey,|lu + v <1
= [ITnlle

This lower bound is not valid in general if Q € N7y. This poses a serious problem
in proving the general result we desire. In the special case where T; = I (and hence
U = 0), the lower bound is valid and the desired result can be proved. Of course this

includes the case where T;! is stable.
Theorem 4.2.2 If T, = I then uyy = prr.
Proof. For all v € V with ||v|| <1,

1Ty - QTs|| > |HI-(Th - QT3)v||e
= |I_Tyv - TT_QI_Tsv||w = || Tiv||w

The above is true since T3(b;) = 0. Hence,

1Ty — QTs|| > |IT1y || = prr

However, the lower bound is achieved by an LTI Q. |

While the conditions of Theorem 2.2 are not the most general, there are in fact some

interesting problems in which T, has a stable inverse. Below are a few examples.

Example 4.2.1 Weighted input-sensitivity minimization for a stable plant.
The map from the reference input to the input of the plant, with a controller in the
feedback loop, is given by §; = Wy(I + KP)~'W,. Incorporating the parameterization

of all stabilizing controllers, S; is given by
S,’ = Wl(I - QP)Wz

Both W, and W, are assumed to have a stable inverse. The result above implies that

nonlinear controllers will not offer any advantage in ¢! tracking problems with stable
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plants. The parallel result for output sensitivity is still open. |

Example 4.2.2 Robust stability with coprime factor perturbations. There is
an important reason for considering this example. Even though the result we presented
earlier is for the square case, it is still valid for the non-square case, i.e for the case where
T3 is a row vector. In this example we will sketch the proof of this result in this special
problem. The general non-square case follows in the same way.

Define the following class of plants:
Q={P|P=(N+A4)(M+ A;)"! and ||A;]| < 1}

*with A; being £ bounded LTV operators and Py = N M ~! satisfying the Bezout identity

(5 a) (5 7)-(s7)
N M -N V 0 I
A sufficient condition for robustly stabilizing the above family with any NLTV controller
is given by
ol IV Ul+QIV M]|<1

This condition is also necessary if the controllers are restricted to be linear, possibly
time-varying [5, 51]. The necessity of this condition for NLTV controllers is as follows.
First, the underlying notion of stability is finite-gain stability over c? rather than ¢*.
Second, the operator @ is restricted to be continuous and have pointwise fading-memory
(52].

We note that the construction in [5, 51, 52] leads to a construction of admissible LTV
A; such that either of the following conditions occurs. The first condition is that the
plant (N + A;)(M + A;)~1! has an internal cancellation. That is, the operators M + A,
and N + A, are no longer coprime. This corresponds to an admissible plant which is not
stabilizable. The second is that the admissible plant (IV 4+ A;)(M + A1)~ ! is stabilizable,
but not using the particular Q with the property ||[V U]+ Q[N M]|| > 1.

It turns out that above infimization is achieved via a linear time-invariant Q. Define

the subspace V (inside £* X {*°) as follows:
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Then for any Q € Nry and v € V, it is true that - ‘ ' j‘, T :,' i

IV U1+ QWY M|l = llzlle 2 2(0)]

Equivalently,

IV 01+ QUY 1)) > sup 2
vey ”v“oo

which was shown in [5] to be achieved by an LTI Q. The generalization to arbitrary T

follows in a similar fashion. ]

So far, there does not exist a general result that proves or disproves the general
case where T, does not have a stable inverse. In the sequel, a smaller lower bound on

||Ty — T>QT3)| is furnished. However, it is not evident that there exists a causal Q that

achieves the bound.
Theorem 4.2.3 Let T3 = 1. Then
T
e s sy Il

wet,uzo ||ull1

Proof. By direct computation, with u € U,

Ty = T2QIl 2 |[(Th = T2Q)flle  Vf € Llao(Z4)s lIfllc <1
> lux(Th - T2Q) flleo Hulls <1
> M (u*(T1 - T2Q)f)lleo
= |- (u*T1£)||cos
This leads to
[|1Ty - T2Ql] > sup sup [T (u* T1f)||
[lufli <1,ueld || flleo <1
= sup  ||Trully
HUIh <lLu€el
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The interpretation of this bound is as follows. Fix any f € {(Z4), then there exist
a Q¢ such that

I(T1 - T2Qf)fllo = sup |H_uxTifl|le
lhulls <1,ueu

This Q y however may very well be a non-causal function of f, and hence does not qualify
as a candidate solution for the original problem. A consequence of this theorem is that
in the case of a fixed input minimization [12], nonlinear time varying compensation does
not improve the performance. This is clear from the fact that the above lower bound is

valid for each f regardless of @ and can be achieved with @ time-invariant [12].
4.2.2 Linearization

In this section, we show that the use smooth NLTV compensation instead of LTI com-
pensation does not improve the achievable rejection of persistent bounded disturbances.
The systems T} 3 are now assumed to be multi-input/multi-output.

The smoothness condition in this context is in terms of the compensation being

linearizable. The following definition is adapted from [60, Chapter 7].

Definition 4.2.1 An operator H € Ny is linearizable if there exists an linear oper-

ator Hy, € Ly so that

“Hf - HLf”co —

lim sup =0.

=01 fll e I1flloo
1#0

In this case, Hy, is called the linearization of H.

The main result of this section is as follows:

Theorem 4.2.4 Let unyr be defined as in (4.1) with the infimization being over all

Q € Nrvy which are linearizable. Then urr = unr.

Proof. Let Q € Ny be linearizable, and let

1Ty - T2QTs|| = p.
We will show that there exists a § € Ly so that

1Ty - T2QTs|| < g
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_Towards this end, let Qr denote the linearization of Q. Then from Definition 4:2.1, given

any ¢ > 0, there exists an a > 0 such that

. T2QTsf — T2QLT5fl|

i ™ =°
1#0
Then
] (T — T>QT5) f||
Hoz Hfﬁlfs,, I fllo
r#0
_ a Ty — T2QrT3) f — (T2QT3 — T2QrT3)fl|
= sup
£ 5 1£llee
1#0
> sup [T = T T)fll - I(T2QTs — T2QrT5) ||
Al gz Ml 1]l < £l
r#0 7#0
> ||T1 - T2QrTs|| —e.

Since ¢ is arbitrary, it follows that
IT1 -~ T2QLTs]| < .
Upon applying Theorem 4.1.1, there exists a § € Ly so that

1Ty - T2QTs]| < g

The idea in the proof of Theorem 4.2.4 is first to show that LTV compensation gives
the same performance as linearizable NLTV compensation. We then use the results from
[51] to show that LTI compensation gives the same performance as linearizable NT.TV

compensation.

4.3 Concluding Remarks

Even for the problem of disturbance rejection, nonlinear controllers can offer some ad-

vantage as seen in the following example. Let z denote the unit delay operator. Let
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T3 = I, and let

: 1 1
T]_-TzQ:(Z)—(l)Q.
- 22 1
Then for any w € £,
w(n) (Qu)(n)
(T1 - T2Q)w)(n) = | w(n-1) | - (QW)(TZ)) :
w(n - 2) (Qu)(n)
Given this structure, an optimal Q may be constructed as follows. Define

B(n) ¥ max (w(n), w(n - 1), w(n - 2)),

w(n) &ef min (w(n), w(n - 1), w(n - 2)).

Then set
_ w(n) + w(n)
=

It can be shown that this selection of Qnr leads to ||Ty — T2Qnr|| = 1. This choice of

(@nrw)(n)

@ is nonlinear. However, the same norm can be achieved by using the linear Q = 0.
Nevertheless, the compensator Q i1, achieves better performance in the sense that signal-
by-signal, the response using @ nr is smaller than using @ = 0. That the two choices
lead to the same norm means there exists a signal so that the responses are the same
size. Note that the choice of Q@ is not differentiable. Thus, the performance is not
characterized by the small signal behavior.

A comment is in order regarding the use of induced norms to assess the performance
of nonlinear feedback systems. For linearizable systems, the overall performance is at
best the “small-signal” performance. Thus, it seem natural that linear controllers would
perform as well as linearizable nonlinear controllers.

It turns out that the use of induced norms to assess performance may be too restric-
tive in the presence of nonlinear compensation. The reason is that this definition requires
the ratio of the error-norm to the disturbance-norm to be small without regard to the
size of the magnitude of the disturbances. More precisely, it may be that the regulated
variable is small while the ratio of error-norm to disturbance-norm is large. This leads to

questioning the utility of induced norms to quantify performance in nonlinear systems.
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One alternative is to consider the worst case performance over a given class of dis-

turbances. For example, let W denote some bounded set of disturbances. Then define

the performance measure
def
% sup |Touw]l.
weWw
Such a performance objective is particularly well-suited to nonlinear systems. It avoids
using induced norms and addresses directly the desired goal of keeping regulated variables

small. Furthermore, it allows the class of disturbances to be defined as desired. For

example, one may define W as

W= {w € € ¢ ||w]| € ¢y and Z:Iw(n)l2 < cz}.

This definition allows both a magnitude and energy bound on the disturbances of interest.
Such notions of performance have been considered in [48, 49].
Acknowledgments The authors thank Paul Middleton for suggesting the preceding

QN1 example.
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Chapter 5

On Slowly Varying Systems: /oo
to /o Performance and
Implications to Robust Adaptive
Control

In this chapter we present a result on the £, to {, performance of slowly time varying
systems. In particular we show that the performance of such systems cannot be much
worse than that of the frozen-time systems which are time invariant. This result is used
to characterize a class of indirect adaptive controllers that can stabilize a time invariant
system subjected to both parametric and /., to {,, bounded unstructured uncertainty.
Pertaining to this class of controllers, a particular r indirect adaptive scheme is proposed
that provides the greatest upper bound on the size of the unstructured uncertainty for

which stability is ensured.

5.1 Introduction

The problem of controlling slowly time-varying systems arises in many applications. The
main paradigm is in gain-scheduling where the plant is time-varying and at successive
points in time a controller is designed to satisfy certain stability and performance speci-
fications based on the “frozen-time” system which is time invariant (LTT). Therefore, the
resulting controller is itself time-varying. However, it is expected that if the rate of time

-variation is small enough then the frozen-time properties carry on to the overall time-
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varying system. In other words, it is expected that the stability of “frozen-time” designs
will guarantee stability of the global time-varying system and also that the performance
of the global system cannot be considerably worse than that of the frozen designs. As a
matter of fact, these expectations have not only been confirmed in practice but also in
theory by the work of several researchers in this area for example [6, 18, 27, 37, 50, 63, 64].

In this chapter we continue the work of [6] that was centered at the stability issue
and extend it to capture the performance part in a bounded input to bounded output
(i.e. fe to £ ) sense. We use the input-output framework of [6] that allows infinite-
dimensional plants and controllers. Hence, the need of a fixed degree is not apparent.
The main result of this chapter is given for single-input single-output (SISO) discrete
slowly varying systems. It states that the {, to ¢, performance of the global time
varying system cannot be much worse than the worst frozen-time {,, to £, performance
given that the rates of variation of the plant and the controller are sufficiently small.
Moreover, given the continuity properties of the optimal ¢, design established in [7] it
follows that optimal ¢; [10, 11] frozen-time design yields an upper bound on the £, to {
p performance of the global system. Our main result is in parallel with these in [63, 64]
however our derivation is more direct and suited to the ¢, to £, disturbance rejection.

An important application of our main result is in robust adaptive control. In particu-
lar we characterize a class of indirect adaptive controllers that can stabilize systems that
" contain both parametric and unstructured uncertainty. The unstructured uncertainty
enters the system in the form of bounded-input, bounded-output operators perturbing
the coprime factors of the plant. This class of stabilizing controllers is obtained by
frozen-time controllers that stabilize the estimated models at each time of the plant.
The estimated model is obtained via a parameter estimation algorithm which produces
slowly varying estimates. The conclusion is that if the frozen time designs stabilize the
estimated model together with the unstructured uncertainty (possibly after some initial
transient period) then stability of the adaptive scheme is guaranteed. This result is sim-
ilar to the one reported in [41] where the auhtors use a continuous time framework and
a different characterization of the size of the uncertainty. Finally, among this class of

controllers we present a particular adaptive scheme that requires for stability the least
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conservative bound on the £, to {» “gain” of the unstructured perturbations. This

scheme is a modification of the ¢; adaptive scheme found in [7].

5.2 Preliminary Definitions

In this chapter the following notation is used:

|z|2 : The Euclidian norm of the finite dimensional real vector z.

&[A] : The maximum singular value of the matrix A.

£1mxn ¢ The normed linear space of all m X n matrices H each of whose entries is a right
sided, absolutely summable real sequence H;; = (H;i;(k))2,. The norm is defined as:

n [= <]

IH g, =max 3 3" |Hi(k)]

=1 k=0

A «n ¢ The normed linear space of all m x n matrices H each of whose entries is a right

sided, magnitude bounded real sequence H;; = (H;j(k))52,- The norm is defined as:

1l =3 mex(sup | H(k))

i=1

2 «n ¢+ The subspace of A}, ,, consisting of all elements which converge to zero.

£ : The space of real m X 1 vectors u each of whose components is a magnitude bounded

real sequence (u;(k))%2,. The norm is defined as:
lellege = max(sup [ui(k)[)
{32 : The space of real m X 1 vector valued sequences.
H()) : The A-transform of a right sided m x n real sequence H = (H(k)){2, defined as:

H(\) = i H(k)\*

k=0

Amxn ¢ The real normed linear space of all m x n matrices H(A) so that H()) is the
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A-transform of an £1,,y, sequence H. This space is isometrically isomorphic to £;,,;yn:

Tv" ¢+ The space of all linear bounded and causal maps from £, t0 £oo,n. We refer to

these operators-as stable.

mxn mxn

Ti" : The subspace of L7y™ consisting of the maps that commute with the shift
operator (i.e. the time invariant maps). This space is isometrically isomorphic to Ay, xn.

IIk, : The kth-truncation operator on {2 defined as:

% : {u(0),u(1),...} — {u(0),...,u(k),0,0,...}

A, ¢ The right shift operator on {35 i.e.

At {a(0),a(1),...} — {0,a(0),a(1),...}

Note: We will often drop the m and n in the above notation when the dimension is
not important or when it is clear from the context. Also, subscripts on the norms are

dropped when there is no ambiguity.

Let T be an operator in L1y with transform representation
A m .
T(A) =Y T(E)N
i1=0
Definition 5.2.1 The Integral Time Absolute Error ITAE associated with T is defined

as

ITAE(T) = i k|T(k)].
k=0

If T' is the LTI operator associated with the derivative 7'()) = %{2 then it follows that
ITAE(T') = ||T'|l.

Given a sequence of LTI operators {4;}2, where each 4; is a map from £°:¢ to £>¢ we

can generate a time varying operator A as (Ay)(t) = (4sy)(¢), t =0,1,....
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Definition 5.2.2 The operator A is called slowly time-varying if there is a constant
vy > 0 so that
- lAe — A-|| S 7lt = 7| Vi,

This is denoted by A, € STV ().

If Ay € L7 for all t and also the L7 norm is bounded uniformly in ¢ then 4 € L7y and
normA = sup, || Pit4,]|.

5.3 Problem Definition

The problem we want to analyze is the stability and performance of the feedback system
in Figure 5.1 where P is a slowly varying plant and C is a controller obtained by “frozen-
time” control. Specifically, the plant P is defined as P = A~'B where A, B are slowly
varying operators associated with the sequences {A;}, {B;}, t = 0,1,2,... of LTI stable
operators respectively and with A~! being well defined. Hence, the plant model is

y(t) = (Pu)(t) = (A7'Bu)(t), t=0,1,2,...
or, equivalently,
(Aty)(t) = (BtU)(t), t= 0, 1, 2, N

We refer to the LTI system P, = A B, as the “frozen-time” plant. The controller is given
as C = L~ M where L, M are associated with the sequences {L;}, {M;}, t = 0,1,2,...0f
LTI stable operators i.e., (Ly)(t) = (L:y)(t) and (My)(t) = (My)(¢). Moreover, L., M,
are so that the LTI controller defined as C; = L 1 M, stabilizes the frozen time plant P,.

The controller operates as
(Cy)(t) = (L™ My)(t), t=0,1,2,...

or, equivalently,

(Leu)(t) = (Mey)(t), t=0,1,2,....

The question we want to answer is under what conditions the feedback loop is stable
and, if so, what is the relation between the performance of the frozen-time pair (P;, C})

and the actual time varying feedback pair (P, C'). This is done in the following section.
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Y2 Y3 Uz

Figure 5.1: Feedback Loop of the Pair (P, C)

5.4 Main Result

In [6] an input-output point of view was taken to prove that, under the assumption
of sufficiently small rate of variation, stability of the frozen-time feedback pair (P, C)
impliesvstability of the pair (P, (). Yet, the performance part of the problem was not
investigated. In the sequel we take the same point of view as in [6] and extend the results
in [6] to capture the performance issue. In particular, for the system in Figure 5.1 define

the stable LTI operator for each ¢t = 0,1,2,...
Gt = LtAt + MtBt.

Since C, stahilizes P, then H; = Gt‘1 € L. Now let 5% represent the map from u; to
y; in the system of Figure 5.1 and S:j the (LTI) map from u; to y; for the frozen system
(P;, Ct). The following theorem which is an extension of Theorem 1 in [6] supplies the

answer to our problem.

Theorem 5.4.1 Assume the following:
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1. The operators defining the plant P are slowly time-varying with rates v4,7p i.e.,
A € STV(“/A),Bt € STV(‘YB)

2. The opez:;tors defining the controller C' are slowly time-varying with rates vr,yis

ie, Ly € STV(yL), My € STV (ym)-

3. The L1 norms and the ITAE of the operators A, By, Ly, M; are uniformly bounded
in t; this of course means that A,B,L,M,€ Lry

4. The L1 norms and the ITAE of the operator H, = G;! are uniformly bounded in
t.

Then, for a given € > 0, there exists a nonzero constant v so that, if y4,vYB,Yr,YM < 7,

the closed loop system is internally stable and
(1= o)lI59 < sup |57 + «.
t

Proof. The proof of the stability part is given in [6]. Here we repeat in brief the main
steps because we will use them to prove the claim for the performance. The closed loop

equations for the system in Figure 5.1 are as follows:
(Aeyn)(t) = (Be(ua — y2))(¢)
(Leya)(t) = (Mt(@z + y1))(t)
ALy + M B;: = G,
By adding subtracting and grouping terms we finally arrive {6] at
(G—}-X Y )(yl)__(LB —BM)(ul) (CL)
-Z G+W)\y) \MB AM Uy
where G is the operator in L1y associated with the family {G,} and X,Y,Z, W are
“perturbation” operators which are due to the time variation of the system P. As

indicated in lemmas 1 and 2 in [6] these operators have L7y norm bounded by the term

¥ X constant where ¥ = max(y4,78,7r,YM) and the constant depends on the uniform
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bounds of assumption 3 of the Theorem 5.4.1; i.e., there are constants cx,cy,cz;cw > 0

so that _
AXN < yex, Y Svery 2]l S vez [|W < vew

Now, from the first equation in (CL) we have
Gyn+Xyi+Yy=v

where v = LBu; — BMu,. If we fix some ¢, G, is a LTI operator; adding and subtracting

this operator in the above operator equation we obtain

G+ (G-Gn+Xpn+Yy=v

! we obtain

or since Hy = G
Y1+ H(G - G)yy + He Xy + HY y, = Hyv.

Evaluating this operator equation at time ¢t we obtain
n1(8) + (H(G = Go)n)(t) + (HeXy1)(8) + (HeY 12)(¢) = (Heo)(2).

Define the operator H as (Hz)(7) = (H,z)(t), 7 = 0,1,2,.... Also define the operator
R as (R )(7) = (H-(G - G+)y1)(7), 7 = 0,1,2,.... Rewritting the above equation in

operator form we have
nn+ Ry +HXy1 + HY y, = Hw.

Similarly working with the second equation, letting w = MBu; + AMu, and putting

both equations together in operator form we get
n\ _ ( Hv
0 (5) = ()

F_<R+HX HY)
=\ -HZ R+HW)

Note that from the uniform bound assumption on H, it follows that H € Lry and

where

therefore the norms of the operators HX, HZ, HY, HW can be bounded by v X constant.
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Also, utilizing the fact that the ITAE of H, is uniformly bounded it is shown in [6] that
the norm of R is bounded in the same way i.e., ||R|| < 7 Xconstant. The stability of the
loop then, follows from the small gain theorem for sufficiently small v.

We now come to the performance part. We will prove our claim for the maps §12, §2%;
the proof for any other map is completely analogous. Let u; = 0 and let ||u;|| < 1. Then

from the system equations we get

y1(t) = —=(HeBMuz)(t) — (HeXy1)(2) — (HeY y2)(2) — (He(G — Ge)yn)(2)

Consider now the frozen LTI feedback system at time ¢ i.e., (P;, C;) subjected to the

same input u; and let y;; denote the output that corresponds to y; in the time varying

loop (P, C). Then evaluating y;; at t we have
y1(t) = —(H B Mus)(2).
Subtracting the above two equations we obtain
y16(t) = 91(t) = (He(BM — BeM,)uz )(t) + (He Xy1)(2) + (HeY y2)(t) + (He(G — G )y )(2)-

The idea here is to bound |[(Hy(BM — B:M,)u,)(t)| by vy xconstant. For this purpose
define the operator K € L1y as

(Kz)(r) = (B-M,z)() 7=0,1,2,...
then
(Hi(BM — BeM¢)us)(t) = (Hy(BM — K)uz)(t) + (He(K — BeMe)uz)(t).
By lemma 1 in {6] and the fact that H; has norm uniformly bounded it follows that
|(He(BM — K)uz)(t)| < v
with ¢; a positive constant. For the term (Hy(K — B:M;)uz)(t) we have the following:

1B-M, — BeMy|| < ||B-|ll| M- — Mel| + || Me]||| Be — B-||
| Brllyalt — 7| + || Mel[ymlt - 7|

IN

72



< velt — 7.

Hence, if 2(7) = ((K — BeM;)uz)(7), then |2(7)] < vealt = 7|, 7 = 0,1,2,... with
¢z > 0. But then from the fact that H, has bounded (uniformly in t) ITAE it follows as
in theorem 1 of [6] that

r=t

| D he(t = 7)z(7)]

=0

|(He(K — BeM;)uz)(t)|

r=t

< e ) he(r)Ir

=0

< Ye3, €3> 0.

Now, looking at the rest of the terms and since ||uz|| £ 1 we have |[(H.Xy1)(t)| <
veal| P3|, (HeY y2)(8)] < vesl|$2%| and [(H(G — Ge)y1)(t)] < vcel|S*?|| so putting ev-
erything together it follows that there are ¢, cy2,¢32 > 0 so that

[91(2) = y2e(t)] < ve + yeral| SP2|| + yea2l| S22
or since ||uz|| < 1 then |y1:(t)| < ||S?|| and therefore
sup [y1 ()] < sup [|SE7[] + ve + yersll 2| + yezl| S|
and since u, is arbitrary
1522 < sup ISE2)] + ve + veral S2]| + ez 57|
Similarly working for ||S2%|| we get
1522)] < sup [|SF%| + vk + Thaal| S22 + vk12l| $72].

Now noting that || H,|| is uniformly bounded then sup, || 52|, sup, |5}?|| < oo and hence

by assumming v sufficiently small the proof of the theorem is complete. |

The above theorem, roughly speaking, indicates that if the rates of variation of the
plant and the controller are sufficiently small then frozen time control would not only

provide stability but also the resulting performance cannot be much worse than the
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worst frozen time design. In [7] it was shown under certain assumptions of existence and
uniqueness that the ¢; design methodology produces optimal frozen-time LTI controllers
for the frozen-time plant that possess the slow variation property given that the plant
is slowly varying. Hence an upper bound on the achievable ||S%/|| can he obtained by
considering ¢;-optimal [10, 11] frozen time control i.e., by considering sup, || 5}’|| obtained

by £; optimal designs.

Remark
A natural question that arises in the case where the plant P is slowly timne varying is
whether optimal frozen-time design at each time ¢ will result in an optimal or near-
optimal design (depending on the rate of variation) for the time-varying system. Al-
though it is tempting to conjecture that, if the rate of variation is sufficiently small then
the optimal performance cannot be far from the performance provided by optimal frozen-
time control at each time ¢, the following example shows that this might not be true:
Consider the plant P € Ly defined by the sequences {4;},{B:} where 4,(\) = 1V,
B\ =2 +1fort =0,1and By(A) = 2A+ (1+9t)for 2 <t < T = (1/7 + 1],
By(A) = 20+ (1 +4T) for t > T, with ¥ > 0. The resulting Toeplitz representation of P

is

N
[\
o

o+
2

1+ 2y

2 14Ty
2 1+ Ty

Clearly, for this P we have ||B; — B,|| < 74|t — 7| Vt,r. Suppose we are interested in
minimizing the Lry norm of the sensitivity map § = (1 + PC)~!. Then as it is well

known [19, 57, 61] the optimization problem transforms to

inf |1 POQ|.
QeLry
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For this particular P we have that P~! € Lyy since P, = B, is eventually (¢ > T') stably

invertible. To view this, let P—! be represented by the lower diagonal structure

g(0,0) 0
Pl = q(l,O) q(lyl)

Then the following recursion holds:
q(%,7) = —2q¢(3,i)q(¢ - 1,7), >0, =0,1,...,i~1
with ¢(0,0) = 1, ¢(¢,i) = 1/(1+ (i = 1)y) for i = 1,...,T and ¢(i,7) = 1/(1 + Ty) for

i > T. Note that for i > T we have that |g(7,7)| = |¢(T,T)| < 1. Therefore, for any

k=1,2,... we have
T +k .
S 1T + k)| < (maxogicr-119(T - 1,5))Ia(T, T)|* + Tk 19(T, T)P

j=0

’ < eulo(T, Tl + =ry-
This evidently shows that P~! € Lry. Hence, by choosing Q, = P~! we can make
|1 = PQ,|| = 0 for any ¥. On the other hand, using ¢; optimal frozen time design
yields (10, 11] Si=0 = 1,St=1 = 1,...,St=r = 0,S8¢=r4+1 = 0,.... The reason for
St=0s .- St=T-1 # 0 is of course the unstable zero of P,=g,..., Pi=T at A = (1 + tv)/2
for all 4. Moreover, the resulting frozen time based controller will yield a performance

||S]| > 1 for any ¥ > 0 no matter how small, since the system will behave exactly as the

frozen LTI one for t = 0, 1.

5.5 Application to Robust Adaptive Control

In this section we utilize the main result of the previous section in order to design a con-
troller for a LTI system which contains both parametric (structured) and unstructured

uncertainty.

5.5.1 Problem statement

The problem we want to resolve is as follows:

We are given the single-input, single-output discrete system
(4o + A4)y)(t) = ((Bo + Ap)u)(t) + d(2)
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where A4,, B, are operators in L1y with a polynomial A-transform representation
Ao(A) = 1+ ao(1)A + ao(2)A% + ... + ao(my)A™,

B,(A) = bo(1)A 4 5,(2)A% + ... + bo(mz)A™2,

with the coefficients of A,()) and B,()) not known a priori; A4 and Ap are unknown,
possibly time-varying, operators in Ly i.e., [|A4l,]|AB|| < oo; finally, d is a bounded
disturbance i.e., |d(t)| < D, Vt = 0,1,2,... for some D > 0. We assume the following a

priori knowledge

Assumption 5.5.1 The integer n = max(m,,m3y) is known.

Assumption 5.5.2 The coefficients of A,()), B,()) lie in a compact convex set © which
is known. Moreover, the above polynomials are coprime (no common zeros) for all

possible values of their coefficients.

Assumption 5.5.3 The bound D and some bound Da so that ||[(ApAa)|| £ Da are

known.

Our task is to find a controller C that stabilizes the system in the presence of the bounded
disturbance d. The situation is depicted in Figure 5.2 where P, = A;!B,.

'5.5.2 An Indirect Control Scheme

The system equations can be rewritten as

() = 8(t — 178, +d(0)+ (2a Aa) (1) )0
where
8, = (=ao(1)... = a5(n) bo(1)...bo(n))T
ot —1)F = (y(t=1)...y(t - n) u(t—1)...u(t - n)).

The approach we will use to design the controller is an indirect adaptive scheme
[30] which is a generalization of the one in [7] to include unstructured uncertainty. In

particular, we will use a parameter estimation scheme to supply at each time t estimates
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Figure 5.2: The Feedback Loop of (P,, C') with Unstructured Uncertainty
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8, for ,. The controller C will be designed based on frozen désigiis C, so that C, stabilizes -
the estimated system at time ¢; the properties of slow variation of the estimates produced

by the parameter estimation scheme together with the main result of the previous section

will guarantee stability.

More specifically, let §(t) = ((Ap A4) (Z))(t) then the equation for the model is
y(t) = ¢(t — 1)76, + d(t) + &(t)

with |6(¢)] < D(¢) and |d(t)| < D, ¥t = 0,1,2, ... where

DY(t) = Da gmag,(1u(r)l,ly(r))).

The parameter estimation scheme to be used is a robustified least squares algorithm
with dead-zone found in [42] which is a modification of the one in [29]. Define for each

estimate 6, the error signal

e(t) = y(t) - (t — 1)76:,
then the algorithm is as follows

v(t)P(t — 2)é(t — 1)

6, =6,y + 1+ o(t - 1)TP(t - 2)¢(t — 1)€(t)

with
v(t)P(t - 2)¢(t ~ 1)¢(t — 1)TP(t - 2)
1+ ¢(t—1)TP(t—2)¢(t - 1)

where 6 and P(—1) are initial guesses with P(~1) = P(-~1)T > 0, and where v(t) =
as(t) with

P(t—1)= P(t —2) -

s(t) = f(B(D*(t) + D),e(t))/e(t),

where we choose a € (0,1), 3 is defined by 8 = \/1/(1 — @) and f(-,-) is the dead-zone

function

f(z,y) = { lyl = |z|, if || < |y|

0, otherwise
The full set of details of the algorithm can be found in [42]. The properties of the
algorithm that will be used for stability of the adaptive scheme are
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o BN + D) le)))
t=oo 1+ ¢T(t — 1)P(t — 2)g(t — 1)

tlilg |6; — 6s-1]2 =0

P(t) > 0, [P(t)] < F[P(~1)] < o0, V¢

We should note that constraining the estimates 6; to lie in © as in [30] does not change
- properties 1,2,3 of the algorithm. The parameter 8 in the estimation scheme will be
taken close to 1 i.e., 1 < 8 < 1 + n, where 7 is sufficiently small (to be established in
the sequel) and positive. The following generalized “key technical lemma” (7, 30] gives

conditions for stability of the adaptive scheme.
Lemma 5.5.1 Assume the following

1. there are constants c; > 0,c2 > 0 and some time instant Ty so that for allt > T}

), < t
|d(t)]2 < c1 +ca Tftéé:@lﬁ( IR

i L (BD(E) + D), le(M)  _ o
tooo 1+ ¢T(t — 1)P(t — 2)p(t — 1)

3. there are constants ky > 0,ky > 0 with ky < % and some time Ty so that for all
t> T,

1
D(t) < ky + k2 %, le(T)l-
Then the sequence {e(t)} is bounded and, therefore, {y(t)}, {u(t)} are bounded.

Proof. Assume {e(t)} is unbounded and let the subsequence {e(t,)} be so that lim,_. |e(tn)| =

oo with |e(tg)| < |e(t1)] < .... Then there is some ng so that Vn > ng
Dl(tn) < k1 + kale(tn)]
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l¢(tn)'2 L<ca+ c2|e(t'n)|

F(B(D'(tn) + D), e(tn)) = le(tn)| = B(D*(tn) + D) > 0.

But then if
o _ _ FAB(D(ta) + D), le(t)])
" 14 ¢T(th = 1)P(tn — 2)d(tn — 1)
we have
o > Ueltn)| = B(D(tn) + D))?
" T 14 g(ta - 1)FF(P(-1)]
therefore
. (1 - Bky)?
P 2 e
which contradicts assumption 2. |

The above lemma guarantees boundedness of the signals provided that the three as-
sumptions hold. Hence, if the control signal u is such that the assumptions of Lemma
5.5.1 are satisfied, then the above weak form of stability [7] of the system is obtained.
In the sequel we show that under certain conditions, using frozen time control for the
estimated system at each time ¢ generates a control sequence u that satisfies the assump-
tions of Lemma 5.5.1 and hence weak-stability is guaranteed. This is done as follows:

Rewriting the equation for the error e we obtain

(Ae-19)(t) = (Beru)(2) + e(t)

where A;_1, B;_1 € L1 are defined by the estimate §;_; = (~a¢_1(1)...—as_1(n) bs—1(1).

as

At—l(A) =1+ at_l(l)/\ + at_1(2)/\2 +...+ at__l(n)/\",

Et-—l(A) = bt_]_(l)A + bt_1(2)A2 +...+ be_l(n))\".

Therefore, u and y can be considered as the input and output of a “fictitious” time-

varying system defined above (Figure 5.3) subjected to the disturbance e. Suppose
now that the controller C' provides stability for the fictitious system and also has the
property ||S¥¢||, |S¥¢|| < 1/(Da(l+ 7)) where S*¢ and S¥¢ are the maps from e to u and
y respectively and 7 > 0 with 1 < 3 < 1+ 7. Then, the assumptions of Lemma 5.5.1 are
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Figure 5.3: The “Fictitious” Feedback Loop

satisfied: the validity of assumption 1 follows from the stability of the fictitious system,
assumption 2 is satisfied from the properties of the parameter estimation algorithm and,

finally, assumption 3 is fulfilled since

DH(t) = Da gua (lu(r)l ly(r)) < Da max(l5[} |5%]) gmas, le(r)

or
DY(t) < k» max [e(r)], k2= 1/(1+7) < 1/8.

In fact, we can relax the norm requirements ||5%¢||,||5¥¢|| < 1/(Da(l + 1)) on the maps
S¥e, S¥¢ by imposing the same condition for a delayed version of the fictitious system.

To view this, suppose the controller is defined by LTI stable operators as
(Leu)(t) = (Mey)(2) + r(2)

where [;()), M,()\) are coprime polynomials of degree at most IV for all £. Without loss
of generality we can take N > n. Let A be the right shift operator and assume that
there is a time index T so that the delayed maps A=TSue AT, A-TSveAT A-TGurpT
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A-TS§v AT are in Lry i.e., if the inputs e,r € £, are delayed by T then the resulting

y,u are in {o,. Moreover, let
T AT SueAT AT S AT) < 1/(Da(l + ).
Defining the state vector

z(t)= (y(t-N)u(t = N)y(t - N+ 1) u(t~N+1) ... y(t—1)u(t - 1))T

we obtain the state space description

0 I 0 0 0
0 0 I 0 0
z(t+1) = : .. - 0 z(t)+ | . | w(?)
0 0 0 I I
®.1(2) B2(t) ... Bn_1(t) En(t)

where &;(t) are 2 X 2 matrices obtained from the coefficients of A,(\), By()), Le()), My(A)
and w(t) = (e(t) r(t))T. Clearly, this is a completely reachable state space represen-
tation of the closed loop. Therefore, we can ensure that the initial input {e(t)}L,
does not produce unbounded u and/or y for, otherwise, it contradicts the stability of
the delayed system: any state at T + N is reachable by some w € /. of the form
w={0,...,0,w(T),w(T+1),...,w(T+N),0,...} and a zero state at T; hence the ini-
tial input {e(t)}_o cannot drive the system to a state at T+ N that results to unbounded
z(t), t > T because then a bounded w as above applied to the delayed system would yield
an unbounded y and u which is a contradiction. But then we can pick some nonzero c;, k;
to account for the initial input {e(¢)}]_, and have the conditions of Lemma 5.5.1 sat-

isfied for Ty} = T» = T. This in turn will guarantee weak stability of the adaptive scheme.

5.5.3 A Class of Stabilizing Controllers

Property 2 of the estimation algorithm shows that the parameter estimates will eventu-
ally vary arbitrarily slowly; hence since ||4; — 4:_1]| < |6; — 6;_1]2 and

||By — Bs—1l|| < [0y — 6:_1]2 it follows that eventually A, B, € STV(y) for some v > 0
arbitrarily small. Utilizing now the results of Theorem 5.4.1 and Lemma 5.5.1 we are
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able to characterize a class of stabilizing controllers for the original system of Figure 5.2, "~
This is done in the following theorem.
Theorem 5.5.1 Assume that for each t the frozen time controller C; = L;_‘l M,;_, sta-

bilizes the frozen time LTI system given by A;_1y = Bi_iu + e. Also let the following

be true

1. There are constants cpg, ¢z, > 0 so that
| My — My _a|| < el — Ge—ilzy ||Le — Ler|] < cr]8r — 8e-1]2.

2. The degrees of L;(}), Mt(/\) as well as the ITAE of My, L, are uniformly bounded

in t.

3. The L1y norm and the ITAE of H, = (LiA; + MB,)~! are uniformly bounded in
t.

4. There is a € > 0 and a time index Ty > 0 so that

S;") 1—-c¢
e € ==
221 (50 )1 < oy

where S;‘e = Mt-—-IHt-h Sé”e = Lt—lHt—l-

Then the control law u(t) = (Cy)(t) where (Le_ u)(t) = (M;_1y)(t), t=0,1,... yields

a weakly stable adaptive system.

Proof. The proof of the theorem follows the same steps as Theorem 5.4.1. First, since
the estimates should lie in the compact set © and 4,(}), By( A) have degree n then 4,, B,
have uniformly bounded norms and ITAE [7]. Also, from assumption 1 the £7; norms
of My, L, will be uniformly bounded. Note that S¥¢ = M,_, H,_,, S¥ = Ly 1H,_, are
precisely the maps from e to u and from e to y respectively in the frozen LTI system.
Since the rate of variation of the estimates converges to zero then there exists some time
index T > Ty after which the rate of variation is sufficiently small to guarantee stability

of the delayed fictitious system and, moreover, the delayed performance conditions

(1= AT S AT|| < sup [|Spe|| + €
t>T
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and

(1 - ©[A-TS¥AT|| < sup ||S¥°| + e.
t>T

The above assertion can be proved exactly as in Theorem 5.4.1. But then
|A-TS¥AT|| < 1/(Da(l + 7)), [A-TSuAT|| < 1/(Da(l + 7))

and hence by the key technical Lemma 5.5.1 the proof is complete. |
Note that the requirements on the frozen-time LTI maps Sp¢ = M,_1H,_;, S¥* =
L,_1H,_1 are exactly the stability-robustness requirements in the presence of the co-
prime factor perturbations A4, Ap of “almost” the same magnitude (for small enough
7n,€) in the estimated LTI system. Hence the meaning of the above theorem is the
following: Given a design methodology that produces controllers C; which are Lipschitz-
continuous with respect to the parameter estimate 6;, then stability of the frozen-time
feedback loop of (4;—1 + A4)~1(Bi-1 + Ap) and C; will result to weak stability of the
adaptive scheme. Next, we present an indirect adaptive scheme which produces frozen-

time controllers that possess the required continuity properties.

5.5.4 The {, Adaptive Algorithm

Here we present briefly a generalization of the {; adaptive scheme of [7] and give sufficient
conditions for stability. The scheme utilizes frozen-time controllers C;; = L;' M, at

each t + 1 that stabilize P; = A4, ! B, and minimize the following criterion

‘ 53‘51) - . (Ct-i—lAt—l(l + PtCt+1)-1) def
Cepr sltl.:{mzing” (S}‘_f_l II= Cest sltxa{mzing” A7Y(1 4 P.Cyyq)? I '= n(8:).

Employing the parameterization of all stabilizing controllers [28] for P, we transform the

problem to

wo) =gt () + (5 ) @

where X, Y; are polynomials in L satisfying the Bezout identity

XgAt - },tBt = 1.
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-All stabilizing controllers are obtained as— - s e e

Copy = Y: + 4:.Q:
- i X: + B:Q:

Since A;, B, are coprime then the only restriction on K; = (g‘) Q. is
t

(—Bt At)Kt =0
which implies that the only interpolation [5] on the closed loop ¥; = (5‘“) is
(=B: A%, =1.

As indicated in [5] the problem can be transformed to a semiinfinite linear programming
problem using duality. The solution to the latter can then be computed with arbitrary
accuracy by truncating the constraints or the variables. In particular, the resulting

problem is as follows [5]

#(8:) = sup z(0)

z€c
subject to

( *bc(O) —bt(l) v —bg(n) 0 0
0 —b,(0) —b¢(1 —bi(n 0
b0 h() b +0)
: . . . . . 2(1

M e a@® . am o o (: <t

0 ag(O) ag(l) N at(n) 0 ‘

;From the above formulation continuity of the cost u(8;) with respect to parameters
changes i.e., 0, is easy to be established. This does not automatically imply that the
assumptions 1, 2, 3 of Theorem 5.5.1 are satisfied. What we need is ¥, to be continuous
with respect to 6; and also to have a uniform degree bound. These requirements might not
be satisfied in this complete generality; for example when the solution is not unique then
continuity is immediately destroyed. Hence, additional assumptions might be needed. In
the case however, where Ag = 0 this is not needed. In this case, the problem becomes

inf [|A7H(1 + PiCogr) M| E pa(8r).

Ct41 stabilizing
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As shown in [7] the finite dimensionality of the LTI system P;, the compactness of ©
together with the properties of the optimal {; solution serve to satisfy assumptions 1,2,3

of Theorem 5.5.1. For assumption 4 to hold the following condition suffices:

1-—¢€
3€>0: ‘%-_e—fsu 0<-——-—'—'——-€ C.
Ka aegm( ) < Dalis7) (C)

Note that g4 < oo since Py is finite dimensional and © is compact. Conversely, from
the above condition we can evaluate the bound D of ||A4]| for which the ¢, indirect
adaptive scheme guarantees stability. Namely,

1
Dp < —
HA

This is so because then there are ¢,7 > 0 so that condition (C) holds. We should
emphasize that, pertaining to this particular class of indirect adaptive controllers, the
¢, adaptive scheme provides the greatest upper bound on the size of ||A 4|| namely 1/p4
for which stability is guaranteed. We do not however claim that this adaptive scheme
is the optimal one. Also note that even if Ag = 0 the plant model captures a wide
class of uncertain systems. Finally, we should stress that in the case where Ag # 0

if the continuity assumptions are satisfied then a bound on Dj for which stability is

guaranteed is
1

L —— ey
supgee 1(0)

5.6 Conclusions

In this chapter we presented a {,, to {,, performance result in the case of slowly time
varying systems. We showed that the performance of a slowly varying system cannot
be much worse than that of the frozen time systems. Our approach was an input-
output approach established in [6]. We utilized this result to characterize a class of
adaptive indirect controllers t hat stabilize a time invariant system which is subjected to
both parametric and unstructured uncertainty. Also, among a class of indirect adaptive
controllers, we proposed an indirect adaptive scheme that provides the greatest upper

bound on the size of unstructured uncertainty for which stability is guaranteed.
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